![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > History of mathematics
At the time of David Hilbert's death in 1943, his leading disciple, Her- mann Weyl, wrote that " . . . the era of mathematics upon which he impressed the seal of his spirit and which is now sinking below the horizon achieved a more perfect balance than prevailed before and after, between the mastering of concrete problems and the formation of general abstract concepts. "l Weyl attributed this "happy equilibrium" in no small part to Hilbert 's work and its influence, adding that "no mathematician of equal stature has risen from our generation., 2 Surely, it would be difficult to exaggerate the importance of Hilbert's contributions to twentieth-century mathematics or even to conceive of what mathematics today would be like without them. He overturned the concep- tual framework of older fields ranging from invariant theory and algebraic number theory to the foundations of geometry. He rehabilitated the Dirich- let Principle, propelled integral equation theory to the forefront of active research, derived the field equations governing Einstein's general theory of relativity, created modern proof theory and metamathematics, and through- out his career he championed the power and efficacy of the axiomatic method not only for mathematics but for all of the exact sciences. Every educated mathematician knows something about Hilbert space, the Hilbert problems, and Hilbert 's formalist program.
One of the great algebraists of the nineteenth century, Marie Ennemond Camille Jordan (1838 1922) became known for his work on matrices, Galois theory and group theory. However, his most profound effect on how we see mathematics came through his Cours d'analyse, which appeared in three editions. Reissued here is the first edition, which was published in three volumes between 1882 and 1887. While highly influential in its time, it now appears to us a transitional work between the partially rigorous 'epsilon delta' calculus of Cauchy and his successors, and the new 'real number' analysis of Weierstrass and Cantor. The first two volumes follow the old tradition while the third volume incorporates a substantial amount of the new analysis. Ten years later, the even more influential second edition followed the new point of view from its start. Volume 1 (1882) covers differential calculus."
Mathematics is a fundamental human activity that can be practised and understood in a multitude of ways; indeed, mathematical ideas themselves are far from being fixed, but are adapted and changed by their passage across periods and cultures. In this Very Short Introduction, Jacqueline Stedall explores the rich historical and cultural diversity of mathematical endeavour from the distant past to the present day. Arranged thematically, to exemplify the varied contexts in which people have learned, used, and handed on mathematics, she also includes illustrative case studies drawn from a range of times and places, including early imperial China, the medieval Islamic world, and nineteenth-century Britain. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Die allgemeine Relativitastheorie lasst sich nur mit Hilfe des Tensorkalkuls formulieren. Diesen lernte Einstein 1912 in Form des absoluten Differentialkalkuls kennen. Dessen Schopfer war Gregorio Ricci, dem zusammen mit Sophus Lie und anderen der Ausbau der Theorie der Differentialinvarianten gelang. Der absolute Differentialkalkul passte zur allgemeinen Relativitatstheorie wie ein Schlussel zum Schloss: der in den Jahren 1884-92 von Ricci entwickelte Kalkul erfullte in der Tat genau das physikalische Konzept der allgemeinen Relativitatstheorie, das Einstein 1907-15 ausarbeitete. Ein derartiges Zusammenpassen war nur dadurch moglich, weil sowohl Ricci innerhalb der Mathematik als auch Einstein innerhalb der Physik vergleichbare Fragen stellten, namlich Fragen nach Invarianten bei speziellen Transformationen. Es wird versucht, den historischen Weg so genau wie moglich anhand der Quellen nachzuzeichnen. Neu ist die Herausarbeitung des invariantentheoretischen Aspekts, dem gegenuber die Bedeutung der Differentialgeometrie fur die Entwicklung des Tensorkalkuls in den Hintergrund treten muss."
Discrete mathematics has been rising in prominence in the past fifty years, both as a tool with practical applications and as a source of new and interesting mathematics. The topics in discrete mathematics have become so well developed that it is easy to forget that common threads connect the different areas, and it is through discovering and using these connections that progress is often made. For over fifty years, Ron Graham has been able to illuminate some of these connections and has helped to bring the field of discrete mathematics to where it is today. To celebrate his contribution, this volume brings together many of the best researchers working in discrete mathematics, including Fan Chung, Erik D. Demaine, Persi Diaconis, Peter Frankl, Alfred W. Hales, Jeffrey C. Lagarias, Allen Knutson, Janos Pach, Carl Pomerance, N. J. A. Sloane, and of course, Ron Graham himself.
In 1503, for the first time, a student in Paris was able to spend his entire university career studying only the printed textbooks of his teacher, thanks to the works of the humanist and university reformer Jacques Lefevre d'Etaples (c. 1455-1536). As printed books became central to the intellectual habits of following generations, Lefevre turned especially to mathematics as a way to renovate the medieval university. Making Mathematical Culture argues this was a pivatol moment in the cultural history of Europe and explores how the rise of the printed book contributed to the growing profile of mathematics in the region. Using student manuscripts and annotated books, Making Mathematical Culture offers a new account of printed textbooks, as jointly made by masters and students, and how such collaborative practices informed approaches to mathematics.
Das vorliegende Buch ist keine Festschrift im gewohnten Sinne, d. h. keine mehr oder weniger willkurliche Sammlung von Fachabhandlungen ohne wechselseitigen inneren Zusammenhang, sondern es unterliegt einer ganz bestimmten Konzeption: Die hier vereinigten Beitdige sollen Leben und Werk Leonhard Eulers etwa im MaBstab seiner breitgefacherten Aktivitaten in synoptischer Sicht abdecken und die nachhaltige Wirkung seines wissenschaft- lichen Schaff ens auf die heutige Zeit aufzeigen. Das Inhaltsverzeichnis lasst leicht folgende Gliederung des Buches erkennen: Der erste Beitrag steht fUr sich al1ein und solI unter BerUcksichtigung der neuen Forschungen einen Uberblick Uber Leben und Wirken Eulers bieten, der einen weiteren Leser- kreis ansprechen mage. Die nachsten neun Aufsatze (Gelfond bis Schoenberg) umspannen die Gebiete Zahlentheorie, Algebra und Analysis, wahrend die nachfolgenden sechs Beitrage (Speiser bis Fellmann) der Physik gewidmet sind. Den drei Arbeiten zur Astronomie (Cross, Yolk, Nevskaja) schliessen sich sechs Uber Eulers Beziehungen zu Akademien und markanten Einzelpersan- lichkeiten an (Kopelevic bis Jaquel), gefolgt von drei Beitragen zur Philoso- phie, Theologie und Biographie Eulers (Breidert, Raith, Bernoulli). Den Abschluss bilden drei Darstellungen zur Editionsgeschichte der Opera omnia und zur Bibliographie (Biermann, Burckhardt). Jeder Beitrag kann unabhan- gig von der getroffenen Reihenfolge gelesen werden. Einheitlich im ganzen Band werden die BezUge auf die Werke Eulers abgekUrzt zitiert, und zwar in der Reihenfolge: Nummer des Enestram- Verzeichnisses, Serie der Opera omnia, Band, evtl. Seitenangabe. Ein Beispiel mage dies verdeutlichen: E. 65/0. I,24, p. 23lf., verweist auf Eulers Methodus inveniendi lineas curvas . . . im Band 24 der Series prima, Seiten 23lf.
In den meisten Darstellungen der Entwicklung der Mathema- tik im 17. Jahrhundert wird man den Namen Faulhaber ver- geblich suchen, obwohl Johannes Faulhaber immer wieder, wenn auch nur bei einigen Spezialisten wie den Mathematikern C. G. J. Jacobi und A. F. Mobius aufgrund seiner mathematischen Lei- stungen Interesse zu erwecken vermochte. Dennoch gibt es in den Faulhaber-Biographien, die seit dem 18. Jahrhundert zu- meist in Ulm und Umgebung, der Heimat Faulhabers, erschienen sind, bislang keine angemessene oder gar vollstandige Wurdigung seines mathematischen Werks. Eine solche Wurdigung erscheint aus verschiedenen Grunden wunschenswert. Die mathematischen Entdeckungen Faulhabers sind nicht nur gemessen an den Lei- stungen deutscher Mathematiker des 16. Jahrhunderts heraus- ragend, sondern auch im Vergleich zu anderen Errungenschaf- ten der Mathematik des 17. Jahrhunderts, das Zeitgenossen als ein Jahrhundert der Mathematik galt, durchaus bemerkenswert. Am auffalligsten und wohl auch von Faulhaber selbst als seine groBte Entdeckung eingeschatzt sind die Summen und hoheren Summen der Potenzen naturlicher Zahlen bis zum Exponenten 17 in Form der heute sogenannten Faulhaberpolynome. Die Re- konstruktion des Findungsweges dieser Potenzsummen auf der Grundlage der Faulhaber zuganglichen elementaren Methoden hat Mathematiker bis in die jungste Zeit beschaftigt.
Dies betrifft 0.11,24,26,27,31 und 0.111,10 (cf. den Verlags- prospekt Birkhauser 1982: Leonhard Euler, Opera omnia). - Eine kurze Geschichte der Euler-Ausgabe mit chronologischen Editions- tabellen findet sich in Leonhard Euler 1707-1783, Beitrage zu Leben und Werk. Gedenkband des Kantons Basel-Stadt, Birkhauser, Basel 1983, K.-R.Biermann:1783-1907, J.J.Burckhardt:1907-1983. Dieser Band wird im folgenden kurz als EGB 83 zitiert. 2 Der 1975 erschienene Band O. IV A, l (Birkhauser, Basel) gibt eine Uebersicht sowie Resumes aller ca. 3000 erhaltenen Briefe von Eulers Korrespondenz. AIle in der vorliegenden Abhandlung heran- gezogenen Briefe werden gemass IV A, l mit ihren Resume-Nummern mit vorangestelltem R gekennzeichnet. Der erste erschienene eigentliche Korrespondenzband ist 0.IVA,5. Er enthalt Eulers Briefwechsel mit Clairaut, d'Alembert und Lagrange (ed. A.P.Jukevic und R.Taton). Erschienen 1980. 3 1m Interesse der Transparenz der genealogischen Verhaltnisse sei ein Stammbaum der Mathematiker Bernoulli wiedergegeben (Aus EGB 83, p.80). Darin mage auch Leonhard Euler als geistiger Sohn Johann Bernoullis Platz finden. Niklau, d.l. Maler r-- --., I Daniel II I I 1751 1834 I L _____ -! 4 Cf. G.Enestram, Der Briefwechsel zwischen Leonhard Euler und Johann I Bernoulli, Bibliotheca Mathematica (3) 4, 1903; (3) 5, 1904; (3) 6, 1905. - Zu Eulers Leistungen auf diesen Gebieten cf. EGB 83 passim.
A. E. H. Love (1863-1940) was an English mathematician and geophysicist renowned for his work on elasticity and wave propagation. Originally published in 1927, as the fourth edition of a title first published in two volumes in 1892 and 1893, this is Love's classic account of the mathematical theory of elasticity. The text provides a detailed explanation of the topic in its various aspects, revealing important relationships with general physics and applications to engineering. Also included are a historical introduction to the theory, notes section, index of authors cited and index of matters treated. This book will be of value to anyone with an interest in elasticity, physics and mathematics.
Das Riemannsche Integral lernen schon die Schuler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Satzen Riemanns auf, die Riemannsche Geometrie ist fur Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die beruhmte Riemannsche Vermutung noch immer offen. Riemann und sein um funf Jahre jungerer Freund Richard Dedekind sahen sich als Schuler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Ubergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstande der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen." "
Im Mittelpunkt des Buchs steht ein bisher weitgehend unerforschtes Arbeitsgebiet des niederlandischen Mathematikers van der Waerden: seine Beitrage zur gruppentheoretischen Methode in der Quantenmechanik um 1930. Entstehungsgeschichte, Inhalt und Wirkung werden von der Autorin detailliert herausgearbeitet und die damalige Kontroverse um den Nutzen der gruppentheoretischen Methode erortert. Dadurch legt sie nicht nur die Vielschichtigkeit von Mathematisierungsprozessen offen, sondern auch ihre Ruckwirkung auf Entwicklungen in der reinen" Mathematik."
Biographie 11 2 Projektive Geometrie 31 3 Die Erfindung der Rechenmaschine 47 4 Das arithmetische Dreieck . . . . 59 5 Die Genesis der Wahrscheinlichkeitsrechnung . 77 6 Der Weg zur lnfinitesimalrechnung . . . . . 97 7 Reflexionen tiber die mathematische Methode 119 8 Physik 125 9 Der PAScALsche Kosmos 137 10 Epilog 149 11 Chronologie 152 Anmerkungen 159 163 Literatur Personentafel 167 Sachindex .. 173 Bildnachweis . 176 FUR MARLIES 7 Vorwort BLAISE PASCAL ist eine faszinierende, aber schwer fassbare Person- lichkeit universaler Pragung. Das geistige Vermachtnis des jugendli- chen Genies erstreckt sich von der Mathematik, Physik und Philo- sophie bis hin zur Literatur und Theologie. Der zweite Band der Serie Vita M athematica ist der Biogra- phie und dem wissenschaftlichen Werk gewidmet, wobei hier die Mathematik im Vordergrund steht. Nach einer einfUhrenden Le- bensbeschreibung werden die einzelnen Disziplinen vorgestellt, unter Einbezug gewisser allgemeiner entwicklungsgeschichtlicher Fakten. Es kommen zur Sprache: Die projektive Geometrie, die Rechenma- schine, das arithmetische Dreieck (heute PAScALsches Dreieck ge- nannt), die Wahrscheinlichkeitsrechnung und die Infinitesimalrech- nung. Ein kurzes Kapitel ist auch der Physik gewidmet.
Karl Weierstrass (1815-1897) was among the leading mathematical figure of the 19th century, a man who had a decisive influence on the way we view analysis today. The centrepiece of this book is the reproduction of a photo album given to Weierstrass in 1885 as a 70th birthday present. The album, which lay hidden in a Berlin museum for over 70 years, contains the portraits of more than 300 students, friends and colleagues from all over Europe, and forms an extraordinary document of the admiration and appreciation shown to him. In an accompanying text, Reinhard Bolling gives interesting details of Weierstrass' life, the lives of those involved in the preparations for his birthday celebrations, and the story of how the album came about."
Wissenschaft und insbesondere die Naturwissenschaften haben heute meist mit "Messen," das heisst mit der quantitativen Erfassung der Wirklichkeit zu tun. Das Eigentliche, die "Qualitat" der Dinge, entzieht sich jedoch diesem technokratischen Zugriff. Die Position der Wissenschaft im Spannungsfeld zwischen den Polen Quantitas und Qualitas in Geschichte und Gegenwart auszuleuchten, ist das Anliegen der Beitrage dieses Bandes. Sie fuhren vor Augen, dass die Wissenschaftskonzeptionen des Altertums und des Mittelalters noch weitgehend qualitativ orientiert waren, und zeigen, wie diese in den verschiedenen Naturwissenschaften durch das neuzeitliche quantitativmessende Paradigma abgelost wurden und welche Probleme es dabei zu bewaltigen galt."
Die Tatsache, dass die Wissenschaft in immer zahlreichere Lebensbereiche eingreift, hat sie in den letzten Jahren vermehrt ins Rampenlicht des oeffentlichen Bewusstseins treten lassen und dazu gefuhrt, dass politische, wirtschaftliche und gesellschaftliche Krafte ihre Autonomie in Frage stellen. Diese aktuelle Diskussion zu bereichern, ist das Anliegen dieses Bandes. Vertreter verschiedener Fachrichtungen untersuchen darin anhand konkreter Fallstudien, wie sich das Verhaltnis zwischen Wissenschaft und Gesellschaft vom Mittelalter bis in die Gegenwart entwickelte. Sie zeigen, dass Wissenschaft zu keiner Zeit in einem gesellschaftlichen Vakuum betrieben wurde - und geben damit wertvolle Denkanstoesse fur die zukunftige Gestaltung dieser konflikttrachtigen Beziehung. Aus dem Inhalt: - Wissenschaft an den Universitaten des Mittelalters - Der Philosoph im 17. Jahrhundert. Selbstbild und gesellschaftliche Stellung - Wissenschaft und Sozietatsbewegung im 18. Jahrhundert - The Industrial Revolution and the Growth of Science - Fortschritt durch Wissenschaft. Die Universitaten im 19. Jahrhundert - Physik und Physiker im Dritten Reich - Biologie und politische Macht - Wissenschaft im heutigen Europa: Aussichten und Probleme.
1m Zusammenhang mit Vorarbeiten zu einer Biographie uber Heinz Hopf sind wir vor einigen Jahren im Archiv des Schweizerischen Schulrates auf bisher unbekannte Dokumente aus dem Jahre 1930 gestossen, wel- che die N achfolgeregelung von Hermann Weyl an der ETH betreffen und die in mehrfacher Hinsicht Interesse verdienen. Dies hat uns veran- lasst, an der ETH systematisch nach weiteren Dokumenten zu Hermann Weyl und zur Mathematik an der ETH aus der Zeit seiner Tiitigkeit in Zurich zu suchen. Versehen mit einem Rahmentext veroffentlichen wir hier eine Zusammenstellung dieser Dokumente, die bis anhin nur schwer oder uberhaupt nicht zugiinglich waren. Hermann Weyl bezeichnet im Ruckblick die 17 Jahre seiner Tatigkeit in Zurich als die "wohl wichtigsten und produktivsten" seines Lebens. In der Tat sind von ihm zwischen 1913 und 1930 acht Bucher und rund siebzig Arbeiten erschienen. In Zurich erreichten ihn auch zahlreiche Berufun- gen aus Deutschland und den USA. 1m Ruckblick spricht er von ihnen als von der "schlimmste[n] Plage" wiihrend dieser Zeit. Es schien uns eine reizvolle Aufgabe zu sein, die iiusseren Lebensumstiinde Hermann Weyls in Zurich zu verfolgen, die ihm eine so erfolgreiche Tiitigkeit ermoglicht haben. Die aufgefundenen Dokumente fugen sich dariiber hinaus auch zu einer Darstellung der personellen Entwicklung der Mathematik (und der theoretischen Physik) an der ETH in den Jahren 1913 bis 1930.
Die neuere Geometrie bildet, ihrer Entstehung nach, einen Gegen satz nicht so sehr zur Geometrie der Alten, wie zur analytischen Geome trie. Von der Geometrie der Alten, wie sie von Euklid zusammengefaBt, nachher stetig erweitert und vielfach umgestaltet, aber in ihrem Charak ter nicht wesentlich verandert worden ist, gibt ein Teil die zum Studium der analytischen Geometrie erforderlichen Vorkenntnisse; man kann diesen Teil die Elemente nennen und jene Geometrie iiberhaupt die elementare wegen der gleichformigen Einfachheit ihres Verfahrens. Die analytische Geometrie ist dem Stoffe nach eine Fortsetzung, der Me thode nach ein Gegensatz zu den Elementen. In diesen tritt die Zahl nur auf, soweit die Natur des Problems sie bedingt, das Beweismittel ist sonst nur Konstruktion. Jene dagegen nimmt die Zahlenlehre, die Analysis, iiberall zu Hilfe, indem sie gerade danach strebt, jede geome trische Aufgabe auf eine Rechnung zuriickzufiihren; die Konstruktion wird dabei freilich nicht ganzlich ausgeschlossen. DaB zur Losung der hoheren Probleme, soweit es sich nicht geradezu urn die Auffindung von Zahlenwerten handelt, die analytische Geometrie nicht die einzige fruchtbare Methode ist, ward bewiesen durch die Weiterentwicklung der reinen Geometrie. Vorbereitet zum Teil durch die reichlich flieBenden Resultate der Rechnung, wurden Gesichtspunkte entdeckt, die moglichst ohne Rechnung gestatteten, verwickelte Beziehungen nicht minder leicht, als es auf dem andern Wege gelungen war oder gelingen konnte, zu beherrschen. Diese Schopfung, die ihre Hilfsmittel unmittelbar aus der Natur des Gegenstandes entnahm, wurde von der elementaren und von der analytischen Geometrie als reine, hohere, synthetische, auch neuere synthetische oder neuere unter schieden."
Das Unendliche hat wie keine andere Frage von jeher so tief das Gemut der Menschen bewegt," das Unendliche hat wie kaum eine andere Idee auf den Verstand so an- regend und fruchtbar gewirkt," das Unendliche ist aber auch wie kein anderer Begriff so der Aufklarung bedurftig. HILBERT [226, p. 163] Etwas mehr als 100 Jahre sind vergangen, seit in den Mathemati- schen Annalen der sechste und letzte Teil von CANTORS fundamenta- ler Arbeit UEber unendliche lineare Punktmannichfaltigkeiten erschie- nen ist. Damit war die Mengenlehre geboren und mit ihr eine prinzipiell neue Auffassung des Unendlichen in der Mathematik, verkoerpert in CANTORS Theorie der transfiniten Zahlen. Diese Theo- rie hat HILBERT als "die bewundernswerteste Blute mathematischen Geistes und uberhaupt eine der hoechsten Leistungen rein verstandes- massiger menschlicher Tatigkeit" bezeichnet. Anfangs unbeachtet oder abgelehnt, zu Ende des vorigen Jahrhunderts zunehmend anerkannt und verwendet, durch die Ent- deckung der Antinomien erneut erschuttert, ist die Mengenlehre in ihrer heutigen axiomatisierten Gestalt eines der Fundamente der Mathematik. Die Tatsache, dass alle mathematischen Begriffe auf mengentheoretische Begriffe zuruckgefuhrt werden koennen, hat ei- nige Autoren sogar zu der Behauptung veranlasst, die gesamte Ma- thematik sei letztendlich mit der Mengenlehre identisch. Wenn uns allerdings eine solche Ansicht als eine ungerechtfertigte UEberbeto- nung des Formalen gegenuber dem Inhaltlichen erscheint, so ist doch unbestritten, dass die mengentheoretische Durchdringung der Mathematik neben der Entstehung des strukturellen Denkens und der Verwendung der axiomatischen Methode ein Wesenszug der mo- dernen Mathematik ist. Das hat in zahlreichen Landern bis in den Schulunterricht hinein gewirkt.
Gerade heute, wo sich die Aufmerksamkeit der fuhrenden Philosophen, Logiker und Mathematiker erneut auf die Grundlagen der systematisch-deduktiven Mathematik richtet, ist dieses Buch von zeitnaher und tiefer Bedeutung."
GOD CREATED THE INTEGERS is Stephen Hawking's personal choice of the greatest mathematical works in history. He allows the reader to peer into the mind of genius by providing us with excerpts from original mathematical proofs and results. He also helps us understand the progression of mathematical thought, and the very foundations of our presentday technologies. The book includes landmark discoveries spanning 2500 years and representing the work of mathematicians such as Euclid, Georg Cantor, Kurt Godel, Augustin Cauchy, Bernard Riemann and Alan Turing. Each chapter begins with a biography of the featured mathematician, clearly explaining the significance of the result, followed by the full proof of the work, reproduced from the original publication, many in new translations.
Diese Einfuhrung in die Analysis orientiert sich an der historischen Entwicklung: Die ersten zwei Kapitel schlagen den Bogen von historischen Berechnungsmethoden zu unendlichen Reihen, zur Differential- und Integralrechnung und zu Differentialgleichungen. Die Etablierung einer mathematisch stringenten Denkhaltung im 19. Jahrhundert fur ein und mehrere Variablen ist Thema der darauffolgenden Kapitel. Viele Beispiele, Berechnungen und Bilder machen den Band zu einem Lesevergnugen fur Studierende, fur Lehrer und fur Wissenschaftler.
Zum Anlass des 100. Geburtstages der Deutschen Mathematiker-Vereinigung erscheint diese Festschrift, bestehend aus neunzehn Beitragen, in denen anerkannte Fachwissenschaftler die Entwicklung ihres jeweiligen mathematischen Fachgebietes beschreiben und dabei auch kritische Ruckschau auf die Geschichte der Deutschen Mathematiker-Vereinigung seit ihrer Grundung 1890 halten. Insbesondere der erste Beitrag setzt sich intensiv mit der Historie der Mathematik und der Mathematiker im Dritten Reich auseinander."Mit diesem Band wird ein wichtiger Beitrag zur bisher wenig entwickelten Geschichtsschreibung der neueren Mathematik geleistet. (R. Siegmund-Schultze in "Deutsche Literatur-Zeitung" 1,2/1992, Bd. 113) |
You may like...
Modern Analytic Mechanics
Claudio Pellegrini, Richard K. Cooper
Hardcover
R2,931
Discovery Miles 29 310
3D Imaging for Safety and Security
Andreas Koschan, Marc Pollefeys, …
Hardcover
R1,455
Discovery Miles 14 550
Securing the Internet of Things…
Information Reso Management Association
Hardcover
R10,356
Discovery Miles 103 560
Mathematics For Engineering Students
Ramoshweu Solomon Lebelo, Radley Kebarapetse Mahlobo
Paperback
R397
Discovery Miles 3 970
Buildings, Finite Geometries and Groups…
N.S. Narasimha Sastry
Hardcover
R4,056
Discovery Miles 40 560
|