![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology
This book contains a collection of articles corresponding to some of the talks delivered at the Foundations of Computational Mathematics conference held at IMPA in Rio de Janeiro in January 1997. Some ofthe others are published in the December 1996 issue of the Journal of Complexity. Both of these publications were available and distributed at the meeting. Even in this aspect we hope to have achieved a synthesis of the mathematics and computer science cultures as well as of the disciplines. The reaction to the Park City meeting on Mathematics of Numerical Analy sis: Real Number Algorithms which was chaired by Steve Smale and had around 275 participants, was very enthusiastic. At the suggestion of Narendra Karmar mar a lunch time meeting of Felipe Cucker, Arieh Iserles, Narendra Karmarkar, Jim Renegar, Mike Shub and Steve Smale decided to try to hold a periodic meeting entitled "Foundations of Computational Mathematics" and to form an organization with the same name whose primary purpose will be to hold the meeting. This is then the first edition of FoCM as such. It has been organized around a small collection of workshops, namely - Systems of algebraic equations and computational algebraic geometry - Homotopy methods and real machines - Information-based complexity - Numerical linear algebra - Approximation and PDEs - Optimization - Differential equations and dynamical systems - Relations to computer science - Vision and related computational tools There were also twelve plenary speakers."
This book is an introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. The authors provide a number of applications, principally to number theory and arithmetic progressions (through Van der Waerden's theorem and Szemerdi's theorem). This text is suitable for advanced undergraduate and beginning graduate students.
Geometry undoubtedly plays a central role in modern mathematics. And it is not only a physiological fact that 80 % of the information obtained by a human is absorbed through the eyes. It is easier to grasp mathematical con- cepts and ideas visually than merely to read written symbols and formulae. Without a clear geometric perception of an analytical mathematical problem our intuitive understanding is restricted, while a geometric interpretation points us towards ways of investigation. Minkowski's convexity theory (including support functions, mixed volu- mes, finite-dimensional normed spaces etc.) was considered by several mathe- maticians to be an excellent and elegant, but useless mathematical device. Nearly a century later, geometric convexity became one of the major tools of modern applied mathematics. Researchers in functional analysis, mathe- matical economics, optimization, game theory and many other branches of our field try to gain a clear geometric idea, before they start to work with formulae, integrals, inequalities and so on. For examples in this direction, we refer to [MalJ and [B-M 2J. Combinatorial geometry emerged this century. Its major lines of investi- gation, results and methods were developed in the last decades, based on seminal contributions by O. Helly, K. Borsuk, P. Erdos, H. Hadwiger, L. Fe- jes T6th, V. Klee, B. Griinbaum and many other excellent mathematicians.
The aim of cyclic cohomology theories is the approximation of K-theory by cohomology theories defined by natural chain complexes. The basic example is the approximation of topological K-theory by de Rham cohomology via the classical Chern character. A cyclic cohomology theory for operator algebras is developed in the book, based on Connes' work on noncommutative geometry. Asymptotic cyclic cohomology faithfully reflects the basic properties and features of operator K-theory. It thus becomes a natural target for a Chern character. The central result of the book is a general Grothendieck-Riemann-Roch theorem in noncommutative geometry with values in asymptotic cyclic homology. Besides this, the book contains numerous examples and calculations of asymptotic cyclic cohomology groups.
This is a research monograph covering the majority of known results on the problem of constructing compact symplectic manifolds with no Kaehler structure with an emphasis on the use of rational homotopy theory. In recent years, some new and stimulating conjectures and problems have been formulated due to an influx of homotopical ideas. Examples include the Lupton-Oprea conjecture, the Benson-Gordon conjecture, both of which are in the spirit of some older and still unsolved problems (e.g. Thurston's conjecture and Sullivan's problem). Our explicit aim is to clarify the interrelations between certain aspects of symplectic geometry and homotopy theory in the framework of the problems mentioned above. We expect that the reader is aware of the basics of differential geometry and algebraic topology at graduate level.
From the reviews:"The book...is a thorough and very readable introduction to the arithmetic of function fields of one variable over a finite field, by an author who has made fundamental contributions to the field. It serves as a definitive reference volume, as well as offering graduate students with a solid understanding of algebraic number theory the opportunity to quickly reach the frontiers of knowledge in an important area of mathematics...The arithmetic of function fields is a universe filled with beautiful surprises, in which familiar objects from classical number theory reappear in new guises, and in which entirely new objects play important roles. Goss'clear exposition and lively style make this book an excellent introduction to this fascinating field." MR 97i:11062
The book introduces conceptually simple geometric ideas based on
the existence of fundamental domains for metric G- spaces. A list
of the problems discussed includes Borsuk-Ulam type theorems for
degrees of equivariant maps in finite and infinite dimensional
cases, extensions of equivariant maps and equivariant homotopy
classification, genus and G-category, elliptic boundary value
problem, equivalence of p-group representations.
This is a new in paperback version of a very successful monograph first published in 1980. The book presents a survey of the geometric quantization theory of Konstant and Souriau. For this new paperback edition the text has been extensively rewritten and brought up-to-date, with the addition of many new examples, and an expansion of the material on field theory.
From the reviews: "... In the past, more of the leading mathematicians proposed and solved problems than today, and there were problem departments in many journals. Pólya and Szego must have combed all of the large problem literature from about 1850 to 1925 for their material, and their collection of the best in analysis is a heritage of lasting value. The work is unashamedly dated. With few exceptions, all of its material comes from before 1925. We can judge its vintage by a brief look at the author indices (combined). Let's start on the C's: Cantor, Carathéodory, Carleman, Carlson, Catalan, Cauchy, Cayley, Cesàro,... Or the L's: Lacour, Lagrange, Laguerre, Laisant, Lambert, Landau, Laplace, Lasker, Laurent, Lebesgue, Legendre,... Omission is also information: Carlitz, Erdös, Moser, etc."Bull.Americ.Math.Soc.
The book provides a comprehensive theory of ODE which come as Euler-Lagrange equations from generally higher-order Lagrangians. Emphasis is laid on applying methods from differential geometry (fibered manifolds and their jet-prolongations) and global analysis (distributions and exterior differential systems). Lagrangian and Hamiltonian dynamics, Hamilton-Jacobi theory, etc., for any Lagrangian system of any order are presented. The key idea - to build up these theories as related with the class of equivalent Lagrangians - distinguishes this book from other texts on higher-order mechanics. The reader should be familiar with elements of differential geometry, global analysis and the calculus of variations.
Convex and discrete geometry is one of the most intuitive subjects in mathematics. One can explain many of its problems, even the most difficult - such as the sphere-packing problem (what is the densest possible arrangement of spheres in an n-dimensional space?) and the Borsuk problem (is it possible to partition any bounded set in an n-dimensional space into n+1 subsets, each of which is strictly smaller in "extent" than the full set?) - in terms that a layman can understand; and one can reasonably make conjectures about their solutions with little training in mathematics.
Rather than choosing one point of view of modern topology, the author concentrates on concrete problems in spaces with a few dimensions, introducing only as much algebraic machinery as necessary. This makes it possible to see a wider variety of important features in the subject than is common in introductory texts; it is also in line with the historical development of the subject. Aimed at students not necessarily intending to specialise in algebraic topology, the first part of the book emphasises relations with calculus and uses these ideas to prove the Jordan curve theorem, before going on to study fundamental groups and covering spaces so as to emphasise group actions. A final section gives a taste of the generalisation to higher dimensions.
Integration theory holds a prime position, whether in pure mathematics or in various fields of applied mathematics. It plays a central role in analysis; it is the basis of probability theory and provides an indispensable tool in mathe matical physics, in particular in quantum mechanics and statistical mechanics. Therefore, many textbooks devoted to integration theory are already avail able. The present book by Michel Simonnet differs from the previous texts in many respects, and, for that reason, it is to be particularly recommended. When dealing with integration theory, some authors choose, as a starting point, the notion of a measure on a family of subsets of a set; this approach is especially well suited to applications in probability theory. Other authors prefer to start with the notion of Radon measure (a continuous linear func tional on the space of continuous functions with compact support on a locally compact space) because it plays an important role in analysis and prepares for the study of distribution theory. Starting off with the notion of Daniell measure, Mr. Simonnet provides a unified treatment of these two approaches."
Topology optimization is a relatively new and rapidly expanding field of structural mechanics. It deals with some of the most difficult problems of mechanical sciences but it is also of considerable practical interest, because it can achieve much greater savings than mere cross-section or shape optimization.
The purpose of this book is to present the available (sometimes only partial) solutions to the two fundamental problems: the existence problem and the classification problem for holomorphic structures in a given topological vector bundle over a compact complex surface. Special features of the nonalgebraic surfaces case, like irreducible vector bundles and stability with respect to a Gauduchon metric, are considered. The reader requires a grounding in geometry at graduate student level. The book will be of interest to graduate students and researchers in complex, algebraic and differential geometry.
In this book, two seemingly unrelated fields -- algebraic topology and robust control -- are brought together. The book develops algebraic/differential topology from an application-oriented point of view. The book takes the reader on a path starting from a well-motivated robust stability problem, showing the relevance of the simplicial approximation theorem and how it can be efficiently implemented using computational geometry. The simplicial approximation theorem serves as a primer to more serious topological issues such as the obstruction to extending the Nyquist map, K-theory of robust stabilization, and eventually the differential topology of the Nyquist map, culminating in the explanation of the lack of continuity of the stability margin relative to rounding errors. The book is suitable for graduate students in engineering and/or applied mathematics, academic researchers and governmental laboratories.
This introduction to modern geometry differs from other books in the field due to its emphasis on applications and its discussion of special relativity as a major example of a non-Euclidean geometry. Additionally, it covers the two important areas of non-Euclidean geometry, spherical geometry and projective geometry, as well as emphasising transformations, and conics and planetary orbits. Much emphasis is placed on applications throughout the book, which motivate the topics, and many additional applications are given in the exercises. It makes an excellent introduction for those who need to know how geometry is used in addition to its formal theory.
This book constitutes the refereed proceedings of the 6th
International Workshop on Discrete Geometry for Computer Imagery,
DGCI'96, held in Lyon, France, in November 1996.
This anthology is based on the First ACM Workshop on Applied
Computational Geometry, WACG '96, held in Philadelphia, PA, USA, in
May 1996, as part of the FCRC Conference.
Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.
This book has been called a Workbook to make it clear from the start that it is not a conventional textbook. Conventional textbooks proceed by giving in each section or chapter first the definitions of the terms to be used, the concepts they are to work with, then some theorems involving these terms (complete with proofs) and finally some examples and exercises to test the readers' understanding of the definitions and the theorems. Readers of this book will indeed find all the conventional constituents--definitions, theorems, proofs, examples and exercises but not in the conventional arrangement. In the first part of the book will be found a quick review of the basic definitions of general topology interspersed with a large num ber of exercises, some of which are also described as theorems. (The use of the word Theorem is not intended as an indication of difficulty but of importance and usefulness. ) The exercises are deliberately not "graded"-after all the problems we meet in mathematical "real life" do not come in order of difficulty; some of them are very simple illustrative examples; others are in the nature of tutorial problems for a conven tional course, while others are quite difficult results. No solutions of the exercises, no proofs of the theorems are included in the first part of the book-this is a Workbook and readers are invited to try their hand at solving the problems and proving the theorems for themselves."
The aim of this work is the definition of the polyhedral compactification of the Bruhat-Tits building of a reductive group over a local field. In addition, an explicit description of the boundary is given. In order to make this work as self-contained as possible and also accessible to non-experts in Bruhat-Tits theory, the construction of the Bruhat-Tits building itself is given completely.
From the reviews:
Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists.
We have tried to design this book for both instructional and reference use, during and after a first course in algebraic topology aimed at users rather than developers; indeed, the book arose from such courses taught by the authors. We start gently, with numerous pictures to illustrate the fundamental ideas and constructions in homotopy theory that are needed in later chapters. A certain amount of redundancy is built in for the reader's convenience: we hope to minimize: fiipping back and forth, and we have provided some appendices for reference. The first three are concerned with background material in algebra, general topology, manifolds, geometry and bundles. Another gives tables of homo topy groups that should prove useful in computations, and the last outlines the use of a computer algebra package for exterior calculus. Our approach has been that whenever a construction from a proof is needed, we have explicitly noted and referenced this. In general, wehavenot given a proof unless it yields something useful for computations. As always, the only way to un derstand mathematics is to do it and use it. To encourage this, Ex denotes either an example or an exercise. The choice is usually up to you the reader, depending on the amount of work you wish to do; however, some are explicitly stated as ( unanswered) questions. In such cases, our implicit claim is that you will greatly benefit from at least thinking about how to answer them." |
You may like...
Factorization and Integrable Systems…
Israel Gohberg, Nenad Manojlovic, …
Hardcover
R2,672
Discovery Miles 26 720
Bioengineered Nanomaterials for Wound…
Hamed Barabadi, Muthupandian Saravanan, …
Paperback
R4,795
Discovery Miles 47 950
5G Networks - Planning, Design and…
Christofer Larsson
Paperback
|