Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book presents the state-of-the art of one of the main concerns with microprocessors today, a phenomenon known as "dark silicon". Readers will learn how power constraints (both leakage and dynamic power) limit the extent to which large portions of a chip can be powered up at a given time, i.e. how much actual performance and functionality the microprocessor can provide. The authors describe their research toward the future of microprocessor development in the dark silicon era, covering a variety of important aspects of dark silicon-aware architectures including design, management, reliability, and test. Readers will benefit from specific recommendations for mitigating the dark silicon phenomenon, including energy-efficient, dedicated solutions and technologies to maximize the utilization and reliability of microprocessors.
This book describes state-of-the-art approaches to Fog Computing, including the background of innovations achieved in recent years. Coverage includes various aspects of fog computing architectures for Internet of Things, driving reasons, variations and case studies. The authors discuss in detail key topics, such as meeting low latency and real-time requirements of applications, interoperability, federation and heterogeneous computing, energy efficiency and mobility, fog and cloud interplay, geo-distribution and location awareness, and case studies in healthcare and smart space applications.
This book describes state-of-the-art approaches to Fog Computing, including the background of innovations achieved in recent years. Coverage includes various aspects of fog computing architectures for Internet of Things, driving reasons, variations and case studies. The authors discuss in detail key topics, such as meeting low latency and real-time requirements of applications, interoperability, federation and heterogeneous computing, energy efficiency and mobility, fog and cloud interplay, geo-distribution and location awareness, and case studies in healthcare and smart space applications.
This book constitutes the refereed post-conference proceedings of the 7th International Conference on Mobile Communication and Healthcare, MobiHealth 2017, held in Vienna, Austria, in November 2017. The 34 revised full papers were reviewed and selected from more than 50 submissions and are organized in topical sections covering data analysis, systems, work-in-process, pervasive and wearable health monitoring, advances in healthcare services, design for healthcare, advances in soft wearable technology for mobile-health, sensors and circuits.
This book presents the state-of-the art of one of the main concerns with microprocessors today, a phenomenon known as "dark silicon". Readers will learn how power constraints (both leakage and dynamic power) limit the extent to which large portions of a chip can be powered up at a given time, i.e. how much actual performance and functionality the microprocessor can provide. The authors describe their research toward the future of microprocessor development in the dark silicon era, covering a variety of important aspects of dark silicon-aware architectures including design, management, reliability, and test. Readers will benefit from specific recommendations for mitigating the dark silicon phenomenon, including energy-efficient, dedicated solutions and technologies to maximize the utilization and reliability of microprocessors.
|
You may like...
|