Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This workshop has produced a comprehensive review of Radio Frequency Dosimetry and Bioeffects. Over 80 scientists and technical experts from nine NATO countries and six NATO Partner for Peace countries, and others, review radio frequency radiation dosimetry, measurements and the relationship between SAR, power density and the biological effects of the electromagnetic fields.
A reflection of the intense study of the effects of electromagnetic fields on living tissues that has taken place during the last decades, Advanced Electroporation Techniques in Biology and Medicine summarizes most recent experimental findings and theories related to permeabilization of biomembranes by pulsed electric fields. Edited by experts and including contributions from pioneers in the field, the book focuses on biophysical mechanisms of electroporation and applications of this phenomenon in biomedical research and medicine. The field of electroporation is now mature enough to move from journal pages to book covers. The book leads readers from the basics and history of electroporation, through mechanisms of membrane permeabilization in lipid bilayers and living cells, to electrically-mediated gene delivery and cancer therapy in animals and humans. This book is an interdisciplinary compilation intended broadly for biomedical and physical scientists, engineers, and clinicians. It can also be used as a textbook for students in advanced courses in biomedical engineering, molecular and cell biology, as well as in biophysics and clinical medicine.
A reflection of the intense study of the effects of electromagnetic fields on living tissues that has taken place during the last decades, Advanced Electroporation Techniques in Biology and Medicine summarizes most recent experimental findings and theories related to permeabilization of biomembranes by pulsed electric fields. Edited by experts and including contributions from pioneers in the field, the book focuses on biophysical mechanisms of electroporation and applications of this phenomenon in biomedical research and medicine. The field of electroporation is now mature enough to move from journal pages to book covers. The book leads readers from the basics and history of electroporation, through mechanisms of membrane permeabilization in lipid bilayers and living cells, to electrically-mediated gene delivery and cancer therapy in animals and humans. This book is an interdisciplinary compilation intended broadly for biomedical and physical scientists, engineers, and clinicians. It can also be used as a textbook for students in advanced courses in biomedical engineering, molecular and cell biology, as well as in biophysics and clinical medicine.
This book aims at informing on new trends, challenges and solutions, in the multidisciplinary field of biomedical engineering. It covers traditional biomedical engineering topics, as well as innovative applications such as artificial intelligence in health care, tissue engineering , neurotechnology and wearable devices. Further topics include mobile health and electroporation-based technologies, as well as new treatments in medicine. Gathering the proceedings of the 8th European Medical and Biological Engineering Conference (EMBEC 2020), held on November 29 - December 3, 2020, in Portoroz, Slovenia, this book bridges fundamental and clinically-oriented research, emphasizing the role of education, translational research and commercialization of new ideas in biomedical engineering. It aims at inspiring and fostering communication and collaboration between engineers, physicists, biologists, physicians and other professionals dealing with cutting-edge themes in and advanced technologies serving the broad field of biomedical engineering.
The North Atlantic Treaty Organization (NATO) has sponsored research supporting development of personnel safety standards for exposure to Radio Frequency Radiation (RFR) for over a quarter century. NATO previously recognized that one of the most important tools used in the RFR effects research laboratory is accurate dosimetry when it supported a NATO Advanced Studies Institute (ASI) on Advances in Biological Effects and Dosimetry of Low Energy Electromagnetic Fields held in 1981, in Erice, Sicily. That meeting resulted in a NATO ASI publication; Biological Effects and Dosimetry of l Non-ionizing Radiation: Radiofrequency and Microwave Energies . The most recent NATO sponsored program on RFR was an Advanced Research Workshop (ARW) on "Developing a New Standardization Agreement (STANAG) for Radio frequency Radiation" held May 1993, at the Pratica di Mare Italian Air Force Base, Pomezia (Rome) Italy. That ARW produced an ASI proceedings, published in 1995: Radio frequency Radiation Standards, Biological Effects, Dosimetry, Epidemiology, and Public Health Policy2. The Rome ARW and the Proceedings served as a springboard to the much needed revision of the NATO Standardization Agreement (STANAG) 2345 MED "Evaluation and Control of Personnel Exposure to Radio Frequency Fields - 3 kHz to 300 GHz, 3, which was subsequently promulgated in October 1998. One of the published recommendations developed by the Rome ARW was to hold this second ARW focusing on dosimetry and measurements.
This major reference work is a one-shot knowledge base on electroporation and the use of pulsed electric fields of high intensity and their use in biology, medicine, biotechnology, and food and environmental technologies. The Handbook offers a widespread and well-structured compilation of 156 chapters ranging from the foundations to applications in industry and hospital. It is edited and written by most prominent researchers in the field. With regular updates and growing in its volume it is suitable for academic readers and researchers regardless of their disciplinary expertise, and will also be accessible to students and serious general readers. The Handbook's 276 authors have established scholarly credentials and come from a wide range of disciplines. This is crucially important in a highly interdisciplinary field of electroporation and the use of pulsed electric fields of high intensity and its applications in different fields from medicine, biology, food processing, agriculture, process engineering, energy and environment. An Editorial Board of distinguished scholars from across the world has selected and reviewed the various chapters to ensure the highest quality of this Handbook. The book was edited by an international team of Section Editors: P. Thomas Vernier, Boris Rubinsky, Juergen Kolb, Damijan Miklavcic, Marie-Pierre Rols, Javier Raso, Richard Heller, Gregor Sersa, Dietrich Knorr, and Eugene Vorobiev.
|
You may like...
|