Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
High magnetic fields have been an important tool in semiconductor physics for a long time. The area has been growing very rapidly since quantum effects in silicon field-effect transistors have become of practical interest. Since the discovery of the quantum Hall effect by Klaus von Klitzing in 1980, this subject has grown exponentially. The book contains 42 invited papers and 37 contributed papers which were presented at the 7th of the traditional Wurzburg conferences. For the area of high magnetic fields applied in semiconductor physics recent results are discussed, and the state-of-the-art is reviewed. More than 50% of the papers concern two-dimensional electronic systems. Other subjects of current interest are magneto-optics and magneto transport in three-dimensional semiconductors. Special attention has been paid to the rapidly growing field of semimagnetic semiconductors."
This volume contains contributions presented at the International Conference "The Application of High Magnetic Fields in Semiconductor Physics," which was held at the University of Wiirzburg from August 22 to 26, 1988. In the tradition of previous Wiirzburg meetings on the subject - the first conference was held in 1972 - only invited papers were presented orally. All 42 lecturers were asked to review their subject to some extent so that this book gives a good overview of the present state of the respective topic. A look at the contents shows that the subjects which have been treated at previous conferences have not lost their relevance. On the contrary, the application of high magnetic fields to semiconductors has grown substantially during the recent past. For the elucidation of the electronic band structure of semicon ductors high magnetic fields are still an indispensable tool. The investigation of two-dimensional electronic systems especially is frequently connected with the use of high magnetic fields. The reason for this is that a high B-field adds angular momentum quantization to the boundary quantization present in het erostructures and superlattices. A glance at the contributions shows that the majority deal with 2D properties. Special emphasis was on the integral and fractional quantum Hall effect. Very recent results related to the observation of a fraction with an even denbminator were presented. It became obvious that the polarization of the different fractional Landau levels is more complicated than originally anticipated."
High magnetic fields have, for a long time, been an important tool in the investigation of the electronic structure of semiconductors. In recent yearsstudies of heterostructures and superlattices have predominated, and this emphasis is reflected in these proceedings. The contributions concentrate on experiments using transport and optical methods, but recent theoretical developments are also covered. Special attention is paid to the quantum Hall effect, including the problem of edge currents, the influence of contacts, and Wigner condensation in the fractional quantum Hall effect regime. The 27 invited contributions by renowned expertsprovide an excellent survey of the field that is complemented by numerous contributed papers.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|