Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Nonstandard Analysis enhances mathematical reasoning by introducing new ways of expression and deduction. Distinguishing between standard and nonstandard mathematical objects, its inventor, the eminent mathematician Abraham Robinson, settled in 1961 the centuries-old problem of how to use infinitesimals correctly in analysis. Having also worked as an engineer, he saw not only that his method greatly simplified mathematically proving and teaching, but also served as a powerful tool in modelling, analyzing and solving problems in the applied sciences, among others by effective rescaling and by infinitesimal discretizations. This book reflects the progress made in the forty years since the appearance of Robinson s revolutionary book Nonstandard Analysis: in the foundations of mathematics and logic, number theory, statistics and probability, in ordinary, partial and stochastic differential equations and in education. The contributions are clear and essentially self-contained."
Neutrices and External Numbers: A Flexible Number System introduces a new model of orders of magnitude and of error analysis, with particular emphasis on behaviour under algebraic operations. The model is formulated in terms of scalar neutrices and external numbers, in the form of an extension of the nonstandard set of real numbers. Many illustrative examples are given. The book starts with detailed presentation of the algebraic structure of external numbers, then deals with the generalized Dedekind completeness property, applications in analysis, domains of validity of approximations of solutions of differential equations, particularly singular perturbations. Finally, it describes the family of algebraic laws characterizing the practice of calculations with external numbers. Features Presents scalar neutrices and external numbers, a mathematical model of order of magnitude within the real number system. Outlines complete algebraic rules for the neutrices and external numbers Conducts operational analysis of convergence and integration of functions known up to orders of magnitude Formalises a calculus of error propagation, covariant with algebraic operations Presents mathematical models of phenomena incorporating their necessary imprecisions, in particular related to the Sorites paradox
This book reflects the progress made in the forty years since the appearance of Abraham Robinson 's revolutionary book Nonstandard Analysis in the foundations of mathematics and logic, number theory, statistics and probability, in ordinary, partial and stochastic differential equations and in education. The contributions are clear and essentially self-contained.
This research monograph considers the subject of asymptotics from a nonstandard view point. It is intended both for classical asymptoticists - they will discover a new approach to problems very familiar to them - and for nonstandard analysts but includes topics of general interest, like the remarkable behaviour of Taylor polynomials of elementary functions. Noting that within nonstandard analysis, "small," "large," and "domain of validity of asymptotic behaviour" have a precise meaning, a nonstandard alternative to classical asymptotics is developed. Special emphasis is given to applications in numerical approximation by convergent and divergent expansions: in the latter case a clear asymptotic answer is given to the problem of optimal approximation, which is valid for a large class of functions including many special functions. The author's approach is didactical. The book opens with a large introductory chapter which can be read without much knowledge of nonstandard analysis. Here the main features of the theory are presented via concrete examples, with many numerical and graphic illustrations. N
|
You may like...
|