![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
The papers collected in this volume have been presented during a workshop on "Electron-Atom and Molecule Collisions" held at the Centre for Interdisciplinary Studies of the University of Bielefeld in May 1980. This workshop, part of a larger program concerned with the "Properties and Reactions of Isolated Molecules and Atoms," focused on the theory and computational techniques for the quanti tative description of electron scattering phenomena. With the advances which have been made in the accurate quantum mechanical characterisation of bound states of atoms and molecules, the more complicated description of the unbound systems and resonances important in electron collision processes has matured too. As expli cated in detail in the articles of this volume, the theory for the quantitative explanation of elastic and inelastic electron molecule collisions, of photo- and multiple photon ionization and even for electron impact ionization is well developed in a form which lends itself to a complete quantitative ab initio interpretation and pre diction of the observable effects. Many of the experiences gained and the techniques which have evolved over the years in the com putational characterization of bound states have become an essential basis for this development. To be sure, much needs to be done before we have a complete and detailed theoretical understanding of the known collisional processes and of the phenomena and effects, which may still be un covered with the continuing refinement of the experimental tech niques."
In this work aggression and conflict in man and other primates are interpreted in the light of evolutionary biology and game theory models.Unitlnow interdisciplinary collaboration between the humanities and the natural sciences has been rare and hampered by different methodologies and terminology. Nevertheless, such cooperation is essential for elucidating the causes and consequences of aggression in humans and in explaining what shape aggression takes in particular situations. The aim of this volume is to present empirical and theoretical studies from biologists and social scientists to create an interdisciplinary framework for understanding aggression.
The papers collected in this volume have been presented during a workshop on "Electron-Atom and Molecule Collisions" held at the Centre for Interdisciplinary Studies of the University of Bielefeld in May 1980. This workshop, part of a larger program concerned with the "Properties and Reactions of Isolated Molecules and Atoms," focused on the theory and computational techniques for the quanti tative description of electron scattering phenomena. With the advances which have been made in the accurate quantum mechanical characterisation of bound states of atoms and molecules, the more complicated description of the unbound systems and resonances important in electron collision processes has matured too. As expli cated in detail in the articles of this volume, the theory for the quantitative explanation of elastic and inelastic electron molecule collisions, of photo- and multiple photon ionization and even for electron impact ionization is well developed in a form which lends itself to a complete quantitative ab initio interpretation and pre diction of the observable effects. Many of the experiences gained and the techniques which have evolved over the years in the com putational characterization of bound states have become an essential basis for this development. To be sure, much needs to be done before we have a complete and detailed theoretical understanding of the known collisional processes and of the phenomena and effects, which may still be un covered with the continuing refinement of the experimental tech niques.
We characterize an isolated molecule by its compos t on, i.e. the number and types of atoms forming the molecule, its structure, i.e. the geometrical arrangement of the composite atoms with respect to each other, and its possible, i.e. quantum mechanically allowed, stationary energy states. Conceptually we separate the latter, being aware that this is an approximation, into electronic, vibrational and rotational states, including fine and hyperfine structure splittings. To be sure, there is an intimate relation between molecular structure and molecular energy states, in fact it is this relation we use, when we obtain structural information through spectroscopy, where we determine transitions between various stationary states of the molecule. The concepts above have proven extremely useful in chemistry and spectroscopy, however, the awareness of the limitations of these concepts has grown in recent years with the increasing recognition of (i) fluctional molecules, (ii) multiphoton absorption processes and (iii) influences due to the surroundings on "isolated" molecules.
During the last thirty years, with the development of high speed electronic computers, methods have evolved, which permit an accurate and quantitative, ab initio determina tion of the electronic wavefunctions of atoms and molecules. Thus a detailed elucida tion of the electronic energy and structure of molecules has become possible using quantum mechanics directly. Ho\ ever, it is necessary, if such calculations are to yield accurate and reliable results, to include electron correlation explicitely, which requires in general . configuration mixing procedures with an extremely large 5 number of configurations, of the order of 10 configurations. With eigenvalue problems of this size, the limits of even the largest and fastest computers are reached rapidly, and their solution has become possible only, because direct methods have been deve loped which permit the determination of eigenvalues and eigenvectors for such large matrices iteratively without constructing the energy matrix explicitely. These direct methods had been limited to the description of closed shell systems, i. e. systems with a single dominant closed shell reference determinant. This limitation arose, because with an open shell reference or with several reference determinants, no procedures were known, which allowed a rapid calculation of the energy matrix elements between configurations with general and widely different spin couplings, which would be necessary. Recently such methods have been developed, based on early work of Gelfand, Biedenharn and Moshinski using a unitary group representation of different spin coupled states; Paldus achieved an extremely compact description."
|
![]() ![]() You may like...
Rogue One: A Star Wars Story - Blu-Ray…
Felicity Jones, Diego Luna, …
Blu-ray disc
R382
Discovery Miles 3 820
|