Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
Power Flow Control Solutions for a Modern Grid using SMART Power Flow Controllers Provides students and practicing engineers with the foundation required to perform studies of power system networks and mitigate unique power flow problems Power Flow Control Solutions for a Modern Grid using SMART Power Flow Controllers is a clear and accessible introduction to power flow control in complex transmission systems. Starting with basic electrical engineering concepts and theory, the authors provide step-by-step explanations of the modeling techniques of various power flow controllers (PFCs), such as the voltage regulating transformer (VRT), the phase angle regulator (PAR), and the unified power flow controller (UPFC). The textbook covers the most up-to-date advancements in the Sen transformer (ST), including various forms of two-core designs and hybrid architectures for a wide variety of applications. Beginning with an overview of the origin and development of modern power flow controllers, the authors explain each topic in straightforward engineering terms--corroborating theory with relevant mathematics. Throughout the text, easy-to-understand chapters present characteristic equations of various power flow controllers, explain modeling in the Electromagnetic Transients Program (EMTP), compare transformer-based and mechanically-switched PFCs, discuss grid congestion and power flow limitations, and more. This comprehensive textbook: Describes why effective Power Flow Controllers should be viewed as impedance regulators Provides computer simulation codes of the various power flow controllers in the EMTP programming language Contains numerous worked examples and data cases to clarify complex issues Includes results from the simulation study of an actual network Features models based on the real-world experiences the authors, co-inventors of first-generation FACTS controllers Written by two acknowledged leaders in the field, Power Flow Control Solutions for a Modern Grid using SMART Power Flow Controllers is an ideal textbook for graduate students in electrical engineering, and a must-read for power engineering practitioners, regulators, and researchers.
Demystifies FACTS controllers, offering solutions to power control and power flow problems Flexible alternating current transmission systems (FACTS) controllers represent one of the most important technological advances in recent years, both enhancing controllability and increasing power transfer capacity of electric power transmission networks. This timely publication serves as an applications manual, offering readers clear instructions on how to model, design, build, evaluate, and install FACTS controllers. Authors Kalyan Sen and Mey Ling Sen share their two decades of experience in FACTS controller research and implementation, including their own pioneering FACTS design breakthroughs. Readers gain a solid foundation in all aspects of FACTS controllers, including: Basic underlying theories Step-by-step evolution of FACTS controller development Guidelines for selecting the right FACTS controller Sample computer simulations in EMTP programming language Key differences in modeling such FACTS controllers as the voltage regulating transformer, phase angle regulator, and unified power flow controller Modeling techniques and control implementations for the three basic VSC-based FACTS controllers--STATCOM, SSSC, and UPFC In addition, the book describes a new type of FACTS controller, the Sen Transformer, which is based on technology developed by the authors. An appendix presents all the sample models that are discussed in the book, and the accompanying FTP site offers many more downloadable sample models as well as the full-color photographs that appear throughout the book. This book is essential reading for practitioners and students of power engineering around the world, offering viable solutions to the increasing problems of grid congestion and power flow limitations in electric power transmission systems.
|
You may like...
|