0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (4)
  • R2,500 - R5,000 (5)
  • R5,000 - R10,000 (2)
  • -
Status
Brand

Showing 1 - 11 of 11 matches in All Departments

Quantum Computation and Information - From Theory to Experiment (Hardcover, 2006 ed.): Hiroshi Imai, Masahito Hayashi Quantum Computation and Information - From Theory to Experiment (Hardcover, 2006 ed.)
Hiroshi Imai, Masahito Hayashi
R6,318 Discovery Miles 63 180 Ships in 10 - 15 working days

This book reviews selected topics charterized by great progress and covers the field from theoretical areas to experimental ones. It contains fundamental areas, quantum query complexity, quantum statistical inference, quantum cloning, quantum entanglement, additivity. It treats three types of quantum security system, quantum public key cryptography, quantum key distribution, and quantum steganography. A photonic system is highlighted for the realization of quantum information processing.

Group Representation for Quantum Theory (Hardcover, 1st ed. 2017): Masahito Hayashi Group Representation for Quantum Theory (Hardcover, 1st ed. 2017)
Masahito Hayashi
R4,514 Discovery Miles 45 140 Ships in 12 - 17 working days

This book explains the group representation theory for quantum theory in the language of quantum theory. As is well known, group representation theory is very strong tool for quantum theory, in particular, angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, quark model, quantum optics, and quantum information processing including quantum error correction. To describe a big picture of application of representation theory to quantum theory, the book needs to contain the following six topics, permutation group, SU(2) and SU(d), Heisenberg representation, squeezing operation, Discrete Heisenberg representation, and the relation with Fourier transform from a unified viewpoint by including projective representation. Unfortunately, although there are so many good mathematical books for a part of six topics, no book contains all of these topics because they are too segmentalized. Further, some of them are written in an abstract way in mathematical style and, often, the materials are too segmented. At least, the notation is not familiar to people working with quantum theory. Others are good elementary books, but do not deal with topics related to quantum theory. In particular, such elementary books do not cover projective representation, which is more important in quantum theory. On the other hand, there are several books for physicists. However, these books are too simple and lack the detailed discussion. Hence, they are not useful for advanced study even in physics. To resolve this issue, this book starts with the basic mathematics for quantum theory. Then, it introduces the basics of group representation and discusses the case of the finite groups, the symmetric group, e.g. Next, this book discusses Lie group and Lie algebra. This part starts with the basics knowledge, and proceeds to the special groups, e.g., SU(2), SU(1,1), and SU(d). After the special groups, it explains concrete applications to physical systems, e.g., angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, and quark model. Then, it proceeds to the general theory for Lie group and Lie algebra. Using this knowledge, this book explains the Bosonic system, which has the symmetries of Heisenberg group and the squeezing symmetry by SL(2,R) and Sp(2n,R). Finally, as the discrete version, this book treats the discrete Heisenberg representation which is related to quantum error correction. To enhance readers' undersnding, this book contains 54 figures, 23 tables, and 111 exercises with solutions.

A Group Theoretic Approach to Quantum Information (Hardcover, 1st ed. 2017): Masahito Hayashi A Group Theoretic Approach to Quantum Information (Hardcover, 1st ed. 2017)
Masahito Hayashi
R2,240 Discovery Miles 22 400 Ships in 12 - 17 working days

This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory.

Quantum Information Theory - Mathematical Foundation (Hardcover, 2nd ed. 2017): Masahito Hayashi Quantum Information Theory - Mathematical Foundation (Hardcover, 2nd ed. 2017)
Masahito Hayashi
R2,904 R1,788 Discovery Miles 17 880 Save R1,116 (38%) Ships in 12 - 17 working days

This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics - all of which are addressed here - made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.

Introduction to Quantum Information Science (Hardcover, 2015 ed.): Masahito Hayashi, Satoshi Ishizaka, Akinori Kawachi, Gen... Introduction to Quantum Information Science (Hardcover, 2015 ed.)
Masahito Hayashi, Satoshi Ishizaka, Akinori Kawachi, Gen Kimura, Tomohiro Ogawa
R3,178 Discovery Miles 31 780 Ships in 12 - 17 working days

This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The currentbook bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols, this book contains quantum teleportation, quantum dense coding, quantum data compression. In particular conversion theory of entanglement via local operation and classical communication are treated too. This theory provides the quantification of entanglement, which coincides with von Neumann entropy. The next part treats the quantum hypothesis testing. The decision problem of two candidates of the unknown state are given. The asymptotic performance of this problem is characterized by information quantities. Using this result, the optimal performance of classical information transmission via noisy quantum channel is derived. Quantum information transmission via noisy quantum channel by quantum error correction are discussed too. Based on this topic, the secure quantum communication is explained. In particular, the quantification of quantum security which has not been treated in existing book is explained. This book treats quantum cryptography from a more practical viewpoint."

Group Representation for Quantum Theory (Paperback, Softcover reprint of the original 1st ed. 2017): Masahito Hayashi Group Representation for Quantum Theory (Paperback, Softcover reprint of the original 1st ed. 2017)
Masahito Hayashi
R4,249 Discovery Miles 42 490 Ships in 10 - 15 working days

This book explains the group representation theory for quantum theory in the language of quantum theory. As is well known, group representation theory is very strong tool for quantum theory, in particular, angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, quark model, quantum optics, and quantum information processing including quantum error correction. To describe a big picture of application of representation theory to quantum theory, the book needs to contain the following six topics, permutation group, SU(2) and SU(d), Heisenberg representation, squeezing operation, Discrete Heisenberg representation, and the relation with Fourier transform from a unified viewpoint by including projective representation. Unfortunately, although there are so many good mathematical books for a part of six topics, no book contains all of these topics because they are too segmentalized. Further, some of them are written in an abstract way in mathematical style and, often, the materials are too segmented. At least, the notation is not familiar to people working with quantum theory. Others are good elementary books, but do not deal with topics related to quantum theory. In particular, such elementary books do not cover projective representation, which is more important in quantum theory. On the other hand, there are several books for physicists. However, these books are too simple and lack the detailed discussion. Hence, they are not useful for advanced study even in physics. To resolve this issue, this book starts with the basic mathematics for quantum theory. Then, it introduces the basics of group representation and discusses the case of the finite groups, the symmetric group, e.g. Next, this book discusses Lie group and Lie algebra. This part starts with the basics knowledge, and proceeds to the special groups, e.g., SU(2), SU(1,1), and SU(d). After the special groups, it explains concrete applications to physical systems, e.g., angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, and quark model. Then, it proceeds to the general theory for Lie group and Lie algebra. Using this knowledge, this book explains the Bosonic system, which has the symmetries of Heisenberg group and the squeezing symmetry by SL(2,R) and Sp(2n,R). Finally, as the discrete version, this book treats the discrete Heisenberg representation which is related to quantum error correction. To enhance readers' undersnding, this book contains 54 figures, 23 tables, and 111 exercises with solutions.

Quantum Information Theory - Mathematical Foundation (Paperback, Softcover reprint of the original 2nd ed. 2017): Masahito... Quantum Information Theory - Mathematical Foundation (Paperback, Softcover reprint of the original 2nd ed. 2017)
Masahito Hayashi
R2,662 Discovery Miles 26 620 Ships in 10 - 15 working days

This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics - all of which are addressed here - made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.

A Group Theoretic Approach to Quantum Information (Paperback, Softcover reprint of the original 1st ed. 2017): Masahito Hayashi A Group Theoretic Approach to Quantum Information (Paperback, Softcover reprint of the original 1st ed. 2017)
Masahito Hayashi
R2,117 Discovery Miles 21 170 Ships in 10 - 15 working days

This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory.

Introduction to Quantum Information Science (Paperback, Softcover reprint of the original 1st ed. 2015): Masahito Hayashi,... Introduction to Quantum Information Science (Paperback, Softcover reprint of the original 1st ed. 2015)
Masahito Hayashi, Satoshi Ishizaka, Akinori Kawachi, Gen Kimura, Tomohiro Ogawa
R1,881 Discovery Miles 18 810 Ships in 10 - 15 working days

This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The current book bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols, this book contains quantum teleportation, quantum dense coding, quantum data compression. In particular conversion theory of entanglement via local operation and classical communication are treated too. This theory provides the quantification of entanglement, which coincides with von Neumann entropy. The next part treats the quantum hypothesis testing. The decision problem of two candidates of the unknown state are given. The asymptotic performance of this problem is characterized by information quantities. Using this result, the optimal performance of classical information transmission via noisy quantum channel is derived. Quantum information transmission via noisy quantum channel by quantum error correction are discussed too. Based on this topic, the secure quantum communication is explained. In particular, the quantification of quantum security which has not been treated in existing book is explained. This book treats quantum cryptography from a more practical viewpoint.

Quantum Computation and Information - From Theory to Experiment (Paperback, Softcover reprint of hardcover 1st ed. 2006):... Quantum Computation and Information - From Theory to Experiment (Paperback, Softcover reprint of hardcover 1st ed. 2006)
Hiroshi Imai, Masahito Hayashi
R6,148 Discovery Miles 61 480 Ships in 10 - 15 working days

This book reviews selected topics charterized by great progress and covers the field from theoretical areas to experimental ones. It contains fundamental areas, quantum query complexity, quantum statistical inference, quantum cloning, quantum entanglement, additivity. It treats three types of quantum security system, quantum public key cryptography, quantum key distribution, and quantum steganography. A photonic system is highlighted for the realization of quantum information processing.

Quantum Information - An Introduction (Paperback, Softcover reprint of hardcover 1st ed. 2006): Masahito Hayashi Quantum Information - An Introduction (Paperback, Softcover reprint of hardcover 1st ed. 2006)
Masahito Hayashi
R3,071 Discovery Miles 30 710 Ships in 10 - 15 working days

This graduate-level textbook provides a unified viewpoint of quantum information theory that merges key topics from both the information-theoretic and quantum- mechanical viewpoints. The text provides a unified viewpoint of quantum information theory and lucid explanations of those basic results, so that the reader fundamentally grasps advances and challenges. This unified approach makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction), and quantum encryption.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Someone Else's Shoes
Jojo Moyes Paperback R395 R309 Discovery Miles 3 090
Children Of Sugarcane
Joanne Joseph Paperback  (3)
R320 R256 Discovery Miles 2 560
Marriage For One
Ella Maise Paperback R270 R216 Discovery Miles 2 160
Suspects
Danielle Steel Paperback  (3)
R340 R292 Discovery Miles 2 920
Too Wild To Tame
Tessa Bailey Paperback R280 R224 Discovery Miles 2 240
Reis Na Liefde
C M Christians Paperback R110 R95 Discovery Miles 950
Reckless - Chestnut Springs: Book 4
Elsie Silver Paperback R260 R206 Discovery Miles 2 060
The Recovery Agent
Janet Evanovich Paperback R395 R324 Discovery Miles 3 240
Iron Flame - The Empyrean: Book 2
Rebecca Yarros Paperback  (2)
R470 R323 Discovery Miles 3 230
The Hardest Fall
Ella Maise Paperback R270 R216 Discovery Miles 2 160

 

Partners