0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (5)
  • R2,500 - R5,000 (5)
  • R5,000 - R10,000 (1)
  • -
Status
Brand

Showing 1 - 11 of 11 matches in All Departments

Fractal Geometry and Number Theory - Complex Dimensions of Fractal Strings and Zeros of Zeta Functions (Hardcover, 1999 ed.):... Fractal Geometry and Number Theory - Complex Dimensions of Fractal Strings and Zeros of Zeta Functions (Hardcover, 1999 ed.)
Michel L Lapidus, Machiel Van Frankenhuysen
R1,630 Discovery Miles 16 300 Ships in 10 - 15 working days

A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo- metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di- mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref- erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap- pendix B. ) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of . c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex- tension. The central notion of this book, the complex dimensions of a fractal string . c, is defined as the poles of the meromorphic extension of (c.

Progress in Inverse Spectral Geometry (Hardcover, 1997 ed.): Stig I. Andersson, Michel L Lapidus Progress in Inverse Spectral Geometry (Hardcover, 1997 ed.)
Stig I. Andersson, Michel L Lapidus
R1,586 Discovery Miles 15 860 Ships in 10 - 15 working days

most polynomial growth on every half-space Re (z)::::: c. Moreover, Op(t) depends holomorphically on t for Re t > O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are A-P-S] and Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation' (%t + p) u(x, t) = 0 { u(x, O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e-; namely, u(., t) = V(t)uoU. Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt, E* (r)E), locally given by 00 K(x, y; t) = L>-IAk( k (r) 'Pk)(X, y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2:: >- k. k=O Now, using, e. g., the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op."

Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And... Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality (Hardcover)
Hafedh Herichi, Michel L Lapidus
R3,743 Discovery Miles 37 430 Ships in 10 - 15 working days

Studying the relationship between the geometry, arithmetic and spectra of fractals has been a subject of significant interest in contemporary mathematics. This book contributes to the literature on the subject in several different and new ways. In particular, the authors provide a rigorous and detailed study of the spectral operator, a map that sends the geometry of fractal strings onto their spectrum. To that effect, they use and develop methods from fractal geometry, functional analysis, complex analysis, operator theory, partial differential equations, analytic number theory and mathematical physics.Originally, M L Lapidus and M van Frankenhuijsen 'heuristically' introduced the spectral operator in their development of the theory of fractal strings and their complex dimensions, specifically in their reinterpretation of the earlier work of M L Lapidus and H Maier on inverse spectral problems for fractal strings and the Riemann hypothesis.One of the main themes of the book is to provide a rigorous framework within which the corresponding question 'Can one hear the shape of a fractal string?' or, equivalently, 'Can one obtain information about the geometry of a fractal string, given its spectrum?' can be further reformulated in terms of the invertibility or the quasi-invertibility of the spectral operator.The infinitesimal shift of the real line is first precisely defined as a differentiation operator on a family of suitably weighted Hilbert spaces of functions on the real line and indexed by a dimensional parameter c. Then, the spectral operator is defined via the functional calculus as a function of the infinitesimal shift. In this manner, it is viewed as a natural 'quantum' analog of the Riemann zeta function. More precisely, within this framework, the spectral operator is defined as the composite map of the Riemann zeta function with the infinitesimal shift, viewed as an unbounded normal operator acting on the above Hilbert space.It is shown that the quasi-invertibility of the spectral operator is intimately connected to the existence of critical zeros of the Riemann zeta function, leading to a new spectral and operator-theoretic reformulation of the Riemann hypothesis. Accordingly, the spectral operator is quasi-invertible for all values of the dimensional parameter c in the critical interval (0,1) (other than in the midfractal case when c =1/2) if and only if the Riemann hypothesis (RH) is true. A related, but seemingly quite different, reformulation of RH, due to the second author and referred to as an 'asymmetric criterion for RH', is also discussed in some detail: namely, the spectral operator is invertible for all values of c in the left-critical interval (0,1/2) if and only if RH is true.These spectral reformulations of RH also led to the discovery of several 'mathematical phase transitions' in this context, for the shape of the spectrum, the invertibility, the boundedness or the unboundedness of the spectral operator, and occurring either in the midfractal case or in the most fractal case when the underlying fractal dimension is equal to 1/2 or 1, respectively. In particular, the midfractal dimension c=1/2 is playing the role of a critical parameter in quantum statistical physics and the theory of phase transitions and critical phenomena.Furthermore, the authors provide a 'quantum analog' of Voronin's classical theorem about the universality of the Riemann zeta function. Moreover, they obtain and study quantized counterparts of the Dirichlet series and of the Euler product for the Riemann zeta function, which are shown to converge (in a suitable sense) even inside the critical strip.For pedagogical reasons, most of the book is devoted to the study of the quantized Riemann zeta function. However, the results obtained in this monograph are expected to lead to a quantization of most classic arithmetic zeta functions, hence, further 'naturally quantizing' various aspects of analytic number theory and arithmetic geometry.The book should be accessible to experts and non-experts alike, including mathematics and physics graduate students and postdoctoral researchers, interested in fractal geometry, number theory, operator theory and functional analysis, differential equations, complex analysis, spectral theory, as well as mathematical and theoretical physics. Whenever necessary, suitable background about the different subjects involved is provided and the new work is placed in its proper historical context. Several appendices supplementing the main text are also included.

Fractal Zeta Functions and Fractal Drums - Higher-Dimensional Theory of Complex Dimensions (Hardcover, 1st ed. 2017): Michel L... Fractal Zeta Functions and Fractal Drums - Higher-Dimensional Theory of Complex Dimensions (Hardcover, 1st ed. 2017)
Michel L Lapidus, Goran Radunovic, Darko Zubrinic
R3,778 R2,211 Discovery Miles 22 110 Save R1,567 (41%) Ships in 12 - 17 working days

This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the first time that essential singularities of fractal zeta functions can naturally emerge for various classes of fractal sets and have a significant geometric effect. The theory developed in this book leads naturally to a new definition of fractality, expressed in terms of the existence of underlying geometric oscillations or, equivalently, in terms of the existence of nonreal complex dimensions. The connections to previous extensive work of the first author and his collaborators on geometric zeta functions of fractal strings are clearly explained. Many concepts are discussed for the first time, making the book a rich source of new thoughts and ideas to be developed further. The book contains a large number of open problems and describes many possible directions for further research. The beginning chapters may be used as a part of a course on fractal geometry. The primary readership is aimed at graduate students and researchers working in Fractal Geometry and other related fields, such as Complex Analysis, Dynamical Systems, Geometric Measure Theory, Harmonic Analysis, Mathematical Physics, Analytic Number Theory and the Spectral Theory of Elliptic Differential Operators. The book should be accessible to nonexperts and newcomers to the field.

Fractal Geometry, Complex Dimensions and Zeta Functions - Geometry and Spectra of Fractal Strings (Paperback, 2nd ed. 2013):... Fractal Geometry, Complex Dimensions and Zeta Functions - Geometry and Spectra of Fractal Strings (Paperback, 2nd ed. 2013)
Michel L Lapidus, Machiel van Frankenhuijsen
R5,647 Discovery Miles 56 470 Ships in 10 - 15 working days

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.

Progress in Inverse Spectral Geometry (Paperback, Softcover reprint of the original 1st ed. 1997): Stig I. Andersson, Michel L... Progress in Inverse Spectral Geometry (Paperback, Softcover reprint of the original 1st ed. 1997)
Stig I. Andersson, Michel L Lapidus
R1,445 Discovery Miles 14 450 Ships in 10 - 15 working days

most polynomial growth on every half-space Re (z)::::: c. Moreover, Op(t) depends holomorphically on t for Re t > O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are A-P-S] and Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation' (%t + p) u(x, t) = 0 { u(x, O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e-; namely, u(., t) = V(t)uoU. Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt, E* (r)E), locally given by 00 K(x, y; t) = L>-IAk( k (r) 'Pk)(X, y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2:: >- k. k=O Now, using, e. g., the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op."

Feynman's Operational Calculus and Beyond - Noncommutativity and Time-Ordering (Hardcover): Gerald W. Johnson, Michel L... Feynman's Operational Calculus and Beyond - Noncommutativity and Time-Ordering (Hardcover)
Gerald W. Johnson, Michel L Lapidus, Lance Nielsen
R2,984 Discovery Miles 29 840 Ships in 12 - 17 working days

This book is aimed at providing a coherent, essentially self-contained, rigorous and comprehensive abstract theory of Feynman's operational calculus for noncommuting operators. Although it is inspired by Feynman's original heuristic suggestions and time-ordering rules in his seminal 1951 paper An operator calculus having applications in quantum electrodynamics, as will be made abundantly clear in the introduction (Chapter 1) and elsewhere in the text, the theory developed in this book also goes well beyond them in a number of directions which were not anticipated in Feynman's work. Hence, the second part of the main title of this book. The basic properties of the operational calculus are developed and certain algebraic and analytic properties of the operational calculus are explored. Also, the operational calculus will be seen to possess some pleasant stability properties. Furthermore, an evolution equation and a generalized integral equation obeyed by the operational calculus are discussed and connections with certain analytic Feynman integrals are noted. This volume is essentially self-contained and we only assume that the reader has a reasonable, graduate level, background in analysis, measure theory and functional analysis or operator theory. Much of the necessary remaining background is supplied in the text itself.

Fractal Zeta Functions and Fractal Drums - Higher-Dimensional Theory of Complex Dimensions (Paperback, Softcover reprint of the... Fractal Zeta Functions and Fractal Drums - Higher-Dimensional Theory of Complex Dimensions (Paperback, Softcover reprint of the original 1st ed. 2017)
Michel L Lapidus, Goran Radunovic, Darko Zubrinic
R4,346 Discovery Miles 43 460 Ships in 10 - 15 working days

This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the first time that essential singularities of fractal zeta functions can naturally emerge for various classes of fractal sets and have a significant geometric effect. The theory developed in this book leads naturally to a new definition of fractality, expressed in terms of the existence of underlying geometric oscillations or, equivalently, in terms of the existence of nonreal complex dimensions. The connections to previous extensive work of the first author and his collaborators on geometric zeta functions of fractal strings are clearly explained. Many concepts are discussed for the first time, making the book a rich source of new thoughts and ideas to be developed further. The book contains a large number of open problems and describes many possible directions for further research. The beginning chapters may be used as a part of a course on fractal geometry. The primary readership is aimed at graduate students and researchers working in Fractal Geometry and other related fields, such as Complex Analysis, Dynamical Systems, Geometric Measure Theory, Harmonic Analysis, Mathematical Physics, Analytic Number Theory and the Spectral Theory of Elliptic Differential Operators. The book should be accessible to nonexperts and newcomers to the field.

Fractal Geometry, Complex Dimensions and Zeta Functions - Geometry and Spectra of Fractal Strings (Hardcover, 2nd ed. 2013):... Fractal Geometry, Complex Dimensions and Zeta Functions - Geometry and Spectra of Fractal Strings (Hardcover, 2nd ed. 2013)
Michel L Lapidus, Machiel van Frankenhuijsen
R3,179 R2,929 Discovery Miles 29 290 Save R250 (8%) Ships in 9 - 15 working days

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary.

Throughout "Geometry, Complex Dimensions and Zeta Functions, "Second Edition, new results are examined and anew definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. Thenewfinal chapterdiscusses several new topics and results obtained since the publication of the first edition."

The Feynman Integral and Feynman's Operational Calculus (Paperback, New Ed): Gerald W. Johnson, Michel L Lapidus The Feynman Integral and Feynman's Operational Calculus (Paperback, New Ed)
Gerald W. Johnson, Michel L Lapidus
R4,661 Discovery Miles 46 610 Ships in 12 - 17 working days

This book provides the most comprehensive mathematical treatment to date of the Feynman path integral. It is written so as to be accessible to mathematicians, mathematical physicists and theoretical physicists. A significant amount of background material is provided for the main topics, and complete proofs are given for most of the central results, making the book suitable for use in an advanced graduate course.

Fractal Geometry and Number Theory - Complex Dimensions of Fractal Strings and Zeros of Zeta Functions (Paperback, Softcover... Fractal Geometry and Number Theory - Complex Dimensions of Fractal Strings and Zeros of Zeta Functions (Paperback, Softcover reprint of the original 1st ed. 2000)
Michel L Lapidus, Machiel Van Frankenhuysen
R1,465 Discovery Miles 14 650 Ships in 10 - 15 working days

A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo- metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di- mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref- erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap- pendix B. ) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of . c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex- tension. The central notion of this book, the complex dimensions of a fractal string . c, is defined as the poles of the meromorphic extension of (c.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Recognition - An Anthology Of South…
Paperback R395 R309 Discovery Miles 3 090
Cyrano de Bergerac
Martin Crimp Paperback R427 Discovery Miles 4 270
Inviting Interruptions - Wonder Tales in…
Cristina Bacchilega, Jennifer Orme Hardcover R2,618 Discovery Miles 26 180
Meet a Body
Frank Launder, Sidney Gilliat Paperback R356 Discovery Miles 3 560
The GUARDSMAN
Ferenc Molnar Paperback R290 Discovery Miles 2 900
1984
George Orwell Paperback R340 Discovery Miles 3 400
An Ideal Husband - Second Edition…
Oscar Wilde Hardcover R1,240 Discovery Miles 12 400
Virginia Woolf's Mythic Method
Amy C Smith Hardcover R3,081 Discovery Miles 30 810
Rewriting Modernity - Studies in Black…
David Attwell Paperback R140 R110 Discovery Miles 1 100
Naelstring
Pieter Fourie Paperback R58 Discovery Miles 580

 

Partners