Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
PEM Fuel Cell Diagnostic Tools presents various tools for diagnosing PEM fuel cells and stacks, including in situ and ex situ diagnostic tools, electrochemical techniques, and physical/chemical methods. The text outlines the principles, experimental implementation, data processing, and application of each technique, along with its capabilities and weaknesses. The book covers many diagnostics employed in the characterization and determination of fuel cell performance. It discusses commonly used conventional tools, such as cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, and transmission electron microscopy. It also examines special tools developed specifically for PEM fuel cells, including transparent cells, cathode discharge, and current mapping, as well as recent advanced tools for diagnosis, such as magnetic resonance imaging and atomic force microscopy. For clarity, the book splits these diagnostic methodologies into two parts-in situ and ex situ. To better understand the tools, PEM fuel cell testing is also discussed. Each self-contained chapter provides cross-references to other chapters. Written by international scientists active in PEM fuel cell research, this volume incorporates state-of-the-art technical advances in PEM fuel cell diagnosis. The diagnostic tools presented help readers to understand the physical and chemical phenomena involved in PEM fuel cells.
PEM Fuel Cell Diagnostic Tools presents various tools for diagnosing PEM fuel cells and stacks, including in situ and ex situ diagnostic tools, electrochemical techniques, and physical/chemical methods. The text outlines the principles, experimental implementation, data processing, and application of each technique, along with its capabilities and weaknesses. The book covers many diagnostics employed in the characterization and determination of fuel cell performance. It discusses commonly used conventional tools, such as cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, and transmission electron microscopy. It also examines special tools developed specifically for PEM fuel cells, including transparent cells, cathode discharge, and current mapping, as well as recent advanced tools for diagnosis, such as magnetic resonance imaging and atomic force microscopy. For clarity, the book splits these diagnostic methodologies into two parts-in situ and ex situ. To better understand the tools, PEM fuel cell testing is also discussed. Each self-contained chapter provides cross-references to other chapters. Written by international scientists active in PEM fuel cell research, this volume incorporates state-of-the-art technical advances in PEM fuel cell diagnosis. The diagnostic tools presented help readers to understand the physical and chemical phenomena involved in PEM fuel cells.
An ever-increasing concern over environmental degradation, together with recent technological advances, has spawned an explosion of chemical data for a wide variety of matter found on earth and in the solar system. Yuan-Hui Li's book offers professionals and students alike an indispensable up-to-date guide to geochemistry, bringing together new information on topics ranging from nucleosynthesis to crystal chemistry, from the systematics of chemical variation in the earth's core to the composition of complex organics. The objective is to illustrate the physicochemical principles and various natural processes that can explain observed compositional changes in natural substances. A general understanding of these principles and processes (including those pertaining to cosmology, geology, and biology) is essential, maintains the author, for deciphering and predicting transport pathways and final sinks of anthropogenic pollutants in our environment. The book focuses on compositional data and related references for such substances as solar photosphere, meteorites, igneous rocks, soils, sedimentary rocks, surficial waters, marine and terrestrial organisms (including humans), and aerosols. It emphasizes the use of original raw data as much as possible, and applies the statistical technique of factor analysis to elucidate any underlying interrelationships among chemical elements and given sample sets. Whenever applicable, simple chemical thermodynamic models are introduced to explain the observed partitioning of elements among different phases.
|
You may like...
Kirstenbosch - A Visitor's Guide
Colin Paterson-Jones, John Winter
Paperback
|