0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Buy Now

Mastering Reinforcement Learning with Python - Build next-generation, self-learning models using reinforcement learning techniques and best practices (Paperback) Loot Price: R1,248
Discovery Miles 12 480
Mastering Reinforcement Learning with Python - Build next-generation, self-learning models using reinforcement learning...

Mastering Reinforcement Learning with Python - Build next-generation, self-learning models using reinforcement learning techniques and best practices (Paperback)

Enes Bilgin

 (sign in to rate)
Loot Price R1,248 Discovery Miles 12 480 | Repayment Terms: R117 pm x 12*

Bookmark and Share

Expected to ship within 18 - 22 working days

Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practices Key Features Understand how large-scale state-of-the-art RL algorithms and approaches work Apply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and more Explore tips and best practices from experts that will enable you to overcome real-world RL challenges Book DescriptionReinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL. Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning. As you advance, you'll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray's RLlib package. You'll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls. By the end of this book, you'll have mastered how to train and deploy your own RL agents for solving RL problems. What you will learn Model and solve complex sequential decision-making problems using RL Develop a solid understanding of how state-of-the-art RL methods work Use Python and TensorFlow to code RL algorithms from scratch Parallelize and scale up your RL implementations using Ray's RLlib package Get in-depth knowledge of a wide variety of RL topics Understand the trade-offs between different RL approaches Discover and address the challenges of implementing RL in the real world Who this book is forThis book is for expert machine learning practitioners and researchers looking to focus on hands-on reinforcement learning with Python by implementing advanced deep reinforcement learning concepts in real-world projects. Reinforcement learning experts who want to advance their knowledge to tackle large-scale and complex sequential decision-making problems will also find this book useful. Working knowledge of Python programming and deep learning along with prior experience in reinforcement learning is required.

General

Imprint: Packt Publishing Limited
Country of origin: United Kingdom
Release date: December 2020
Authors: Enes Bilgin
Dimensions: 93 x 75 x 32mm (L x W x T)
Format: Paperback
Pages: 544
ISBN-13: 978-1-83864-414-7
Categories: Books > Computing & IT > General theory of computing > Mathematical theory of computation
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks
Promotions
LSN: 1-83864-414-8
Barcode: 9781838644147

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

You might also like..

Hardware Accelerator Systems for…
Shiho Kim, Ganesh Chandra Deka Hardcover R3,950 Discovery Miles 39 500
Learning-Based Adaptive Control - An…
Mouhacine Benosman Paperback R2,569 Discovery Miles 25 690
Machine Learning and Data Mining
I Kononenko, M Kukar Paperback R1,903 Discovery Miles 19 030
Autonomous Mobile Robots - Planning…
Rahul Kala Paperback R4,294 Discovery Miles 42 940
Digital Technologies for Agriculture
Narendra Rathore Singh Hardcover R6,512 Discovery Miles 65 120
Hamiltonian Monte Carlo Methods in…
Tshilidzi Marwala, Rendani Mbuvha, … Paperback R3,518 Discovery Miles 35 180
Machine Learning and Pattern Recognition…
Jahan B. Ghasemi Paperback R3,925 Discovery Miles 39 250
Statistical Modeling in Machine Learning…
Tilottama Goswami, G. R. Sinha Paperback R3,925 Discovery Miles 39 250
Adversarial Robustness for Machine…
Pin-Yu Chen, Cho-Jui Hsieh Paperback R2,204 Discovery Miles 22 040
Machine Learning for Planetary Science
Joern Helbert, Mario D'Amore, … Paperback R3,380 Discovery Miles 33 800
Application of Machine Learning in…
Mohammad Ayoub Khan, Rijwan Khan, … Paperback R3,433 Discovery Miles 34 330
Artificial Intelligence, Machine…
Shikha Jain, Kavita Pandey, … Paperback R2,958 Discovery Miles 29 580

See more

Partners