0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Artificial intelligence

Buy Now

Neuro-Fuzzy and Fuzzy-Neural Applications in Telecommunications (Hardcover, 2004 ed.) Loot Price: R4,337
Discovery Miles 43 370
Neuro-Fuzzy and Fuzzy-Neural Applications in Telecommunications (Hardcover, 2004 ed.): Peter Stavroulakis

Neuro-Fuzzy and Fuzzy-Neural Applications in Telecommunications (Hardcover, 2004 ed.)

Peter Stavroulakis

Series: Signals and Communication Technology

 (sign in to rate)
Loot Price R4,337 Discovery Miles 43 370 | Repayment Terms: R406 pm x 12*

Bookmark and Share

Expected to ship within 12 - 17 working days

Neurofuzzy and fuzzyneural techniques as tools of studying and analyzing complex problems are relatively new even though neural networks and fuzzy logic systems have been applied as computational intelligence structural e- ments for the last 40 years. Computational intelligence as an independent sci- tific field has grown over the years because of the development of these str- tural elements. Neural networks have been revived since 1982 after the seminal work of J. J. Hopfield and fuzzy sets have found a variety of applications since the pub- cation of the work of Lotfi Zadeh back in 1965. Artificial neural networks (ANN) have a large number of highly interconnected processing elements that usually operate in parallel and are configured in regular architectures. The c- lective behavior of an ANN, like a human brain, demonstrates the ability to learn, recall, and generalize from training patterns or data. The performance of neural networks depends on the computational function of the neurons in the network, the structure and topology of the network, and the learning rule or the update rule of the connecting weights. This concept of trainable neural n- works further strengthens the idea of utilizing the learning ability of neural networks to learn the fuzzy control rules, the membership functions and other parameters of a fuzzy logic control or decision systems, as we will explain later on, and this becomes the advantage of using a neural based fuzzy logic system in our analysis. On the other hand, fuzzy systems are structured numerical est

General

Imprint: Springer-Verlag
Country of origin: Germany
Series: Signals and Communication Technology
Release date: March 2004
First published: 2004
Editors: Peter Stavroulakis
Dimensions: 235 x 155 x 20mm (L x W x T)
Format: Hardcover
Pages: 339
Edition: 2004 ed.
ISBN-13: 978-3-540-40759-1
Categories: Books > Professional & Technical > Electronics & communications engineering > Communications engineering / telecommunications > General
Books > Computing & IT > Applications of computing > Artificial intelligence > General
LSN: 3-540-40759-6
Barcode: 9783540407591

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

Partners