0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Signal processing

Buy Now

Markov Random Fields in Image Segmentation (Paperback) Loot Price: R2,220
Discovery Miles 22 200
Markov Random Fields in Image Segmentation (Paperback): Zoltan Kato

Markov Random Fields in Image Segmentation (Paperback)

Zoltan Kato

Series: Foundations and Trends (R) in Signal Processing

 (sign in to rate)
Loot Price R2,220 Discovery Miles 22 200 | Repayment Terms: R208 pm x 12*

Bookmark and Share

Expected to ship within 10 - 15 working days

Markov Random Fields in Image Segmentation introduces the fundamentals of Markovian modeling in image segmentation as well as providing a brief overview of recent advances in the field. Segmentation is considered in a common framework, called image labelling, where the problem is reduced to assigning labels to pixels. In a probabilistic approach, label dependencies are modeled by Markov random fields (MRF) and an optimal labeling is determined by Bayesian estimation, in particular maximum a posteriori (MAP) estimation. The main advantage of MRF models is that prior information can be imposed locally through clique potentials. The primary goal is to demonstrate the basic steps to construct an easily applicable MRF segmentation model and further develop its multiscale and hierarchical implementations as well as their combination in a multilayer model. MRF models usually yield a non-convex energy function. The minimization of this function is crucial in order to find the most likely segmentation according to the MRF model. Besides classical optimization algorithms like simulated annealing or deterministic relaxation, this book also presents recently introduced graph cut-based algorithms. It discusses the possible parallelization techniques of simulated annealing, which allows efficient implementation on, for example, GPU hardware without compromising convergence properties of the algorithms. While the main focus of this monograph is on generic model construction and related energy minimization methods, many sample applications are also presented to demonstrate the applicability of these models in real life problems such as remote sensing, biomedical imaging, change detection, and color- and motion-based segmentation. In real-life applications, parameter estimation is an important issue when implementing completely data-driven algorithms. Therefore some basic procedures, such as expectation-maximization, are also presented in the context of color image segmentation. Markov Random Fields in Image Segmentation is an essential companion for students, researchers and practitioners working on, or about to embark on research in statistical image segmentation.

General

Imprint: Now Publishers Inc
Country of origin: United States
Series: Foundations and Trends (R) in Signal Processing
Release date: October 2012
First published: September 2012
Authors: Zoltan Kato
Dimensions: 234 x 156 x 9mm (L x W x T)
Format: Paperback
Pages: 168
ISBN-13: 978-1-60198-588-0
Categories: Books > Computing & IT > Applications of computing > Signal processing
LSN: 1-60198-588-6
Barcode: 9781601985880

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

Partners