0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

State-Space Methods for Time Series Analysis - Theory, Applications and Software (Paperback): Jose Casals, Alfredo... State-Space Methods for Time Series Analysis - Theory, Applications and Software (Paperback)
Jose Casals, Alfredo Garcia-Hiernaux, Miguel Jerez, Sonia Sotoca, A. Alexandre Trindade
R1,684 Discovery Miles 16 840 Ships in 12 - 19 working days

The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors' E4 MATLAB (R) toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.

State-Space Methods for Time Series Analysis - Theory, Applications and Software (Hardcover): Jose Casals, Alfredo... State-Space Methods for Time Series Analysis - Theory, Applications and Software (Hardcover)
Jose Casals, Alfredo Garcia-Hiernaux, Miguel Jerez, Sonia Sotoca, A. Alexandre Trindade
R3,138 Discovery Miles 31 380 Ships in 12 - 19 working days

The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors' E4 MATLAB (R) toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Tell Me, O Muse - The Song of Deborah…
Charles L. Echols Hardcover R5,611 Discovery Miles 56 110
Statistical Mechanics - Fundamentals and…
R.E. Wilde Hardcover R4,931 Discovery Miles 49 310
Preaching from Inside the Story
Jeffrey W. Frymire Hardcover R1,036 R881 Discovery Miles 8 810
12 Tips for International Students…
Monika Ferenczy Hardcover R661 R588 Discovery Miles 5 880
A Dictionary of Synonymical Terms of the…
James Rawson Paperback R490 Discovery Miles 4 900
Letters from a Father to His Sons in…
Samuel Miller Paperback R491 Discovery Miles 4 910
United States Circuit Court of Appeals…
U S Court of Appeals Ninth Circuit Paperback R819 Discovery Miles 8 190
The Arab Horse...
Spencer Borden Paperback R448 Discovery Miles 4 480
Not Just Friends - Rebuilding Trust And…
Shirley Glass, Jean Coppock Staeheli Paperback R518 R485 Discovery Miles 4 850
Ordinances of the North-West…
Northwest Territories Paperback R634 Discovery Miles 6 340

 

Partners