Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
2 The authors of these issues involve not only mathematicians, but also speci alists in (mathematical) physics and computer sciences. So here the reader will find different points of view and approaches to the considered field. A. M. VINOGRADOV 3 Acta Applicandae Mathematicae 15: 3-21, 1989. (c) 1989 Kluwer Academic Publishers. Symmetries and Conservation Laws of Partial Differential Equations: Basic Notions and Results A. M. VINOORADOV Department of Mathematics, Moscow State University, 117234, Moscow, U. S. S. R. (Received: 22 August 1988) Abstract. The main notions and results which are necessary for finding higher symmetries and conservation laws for general systems of partial differential equations are given. These constitute the starting point for the subsequent papers of this volume. Some problems are also discussed. AMS subject classifications (1980). 35A30, 58005, 58035, 58H05. Key words. Higher symmetries, conservation laws, partial differential equations, infinitely prolonged equations, generating functions. o. Introduction In this paper we present the basic notions and results from the general theory of local symmetries and conservation laws of partial differential equations. More exactly, we will focus our attention on the main conceptual points as well as on the problem of how to find all higher symmetries and conservation laws for a given system of partial differential equations. Also, some general views and perspectives will be discussed."
Since the early work of Gauss and Riemann, differential geometry has grown into a vast network of ideas and approaches, encompassing local considerations such as differential invariants and jets as well as global ideas, such as Morse theory and characteristic classes. In this volume of the Encyclopaedia, the authors give a tour of the principal areas and methods of modern differential geomerty. The book is structured so that the reader may choose parts of the text to read and still take away a completed picture of some area of differential geometry. Beginning at the introductory level with curves in Euclidian space, the sections become more challenging, arriving finally at the advanced topics which form the greatest part of the book: transformation groups, the geometry of differential equations, geometric structures, the equivalence problem, the geometry of elliptic operators. Several of the topics are approaches which are now enjoying a resurgence, e.g. G-structures and contact geometry. As an overview of the major current methods of differential geometry, EMS 28 is a map of these different ideas which explains the interesting points at every stop. The authors' intention is that the reader should gain a new understanding of geometry from the process of reading this survey.
2 The authors of these issues involve not only mathematicians, but also speci alists in (mathematical) physics and computer sciences. So here the reader will find different points of view and approaches to the considered field. A. M. VINOGRADOV 3 Acta Applicandae Mathematicae 15: 3-21, 1989. (c) 1989 Kluwer Academic Publishers. Symmetries and Conservation Laws of Partial Differential Equations: Basic Notions and Results A. M. VINOORADOV Department of Mathematics, Moscow State University, 117234, Moscow, U. S. S. R. (Received: 22 August 1988) Abstract. The main notions and results which are necessary for finding higher symmetries and conservation laws for general systems of partial differential equations are given. These constitute the starting point for the subsequent papers of this volume. Some problems are also discussed. AMS subject classifications (1980). 35A30, 58005, 58035, 58H05. Key words. Higher symmetries, conservation laws, partial differential equations, infinitely prolonged equations, generating functions. o. Introduction In this paper we present the basic notions and results from the general theory of local symmetries and conservation laws of partial differential equations. More exactly, we will focus our attention on the main conceptual points as well as on the problem of how to find all higher symmetries and conservation laws for a given system of partial differential equations. Also, some general views and perspectives will be discussed.
Since the early work of Gauss and Riemann, differential geometry has grown into a vast network of ideas and approaches, encompassing local considerations such as differential invariants and jets as well as global ideas, such as Morse theory and characteristic classes. In this volume of the Encyclopaedia, the authors give a tour of the principal areas and methods of modern differential geomerty. The book is structured so that the reader may choose parts of the text to read and still take away a completed picture of some area of differential geometry. Beginning at the introductory level with curves in Euclidian space, the sections become more challenging, arriving finally at the advanced topics which form the greatest part of the book: transformation groups, the geometry of differential equations, geometric structures, the equivalence problem, the geometry of elliptic operators. Several of the topics are approaches which are now enjoying a resurgence, e.g. G-structures and contact geometry. As an overview of the major current methods of differential geometry, EMS 28 is a map of these different ideas which explains the interesting points at every stop. The authors' intention is that the reader should gain a new understanding of geometry from the process of reading this survey.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|