0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Modeling Self-Heating Effects in Nanoscale Devices (Paperback): Katerina Raleva, Abdul Rawoof Sheik, Dragica Vasileska, Stephen... Modeling Self-Heating Effects in Nanoscale Devices (Paperback)
Katerina Raleva, Abdul Rawoof Sheik, Dragica Vasileska, Stephen M. Goodnick
R1,126 Discovery Miles 11 260 Ships in 10 - 15 working days

It is generally acknowledged that modeling and simulation are preferred alternatives to trial and error approaches to semiconductor fabrication in the present environment, where the cost of process runs and associated mask sets is increasing exponentially with successive technology nodes. Hence, accurate physical device simulation tools are essential to accurately predict device and circuit performance. Accurate thermal modelling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modelling methods that must be employed in order to determine a device's temperature profile.

Modeling Self-Heating Effects in Nanoscale Devices (Hardcover): Katerina Raleva, Abdul Rawoof Sheik, Dragica Vasileska, Stephen... Modeling Self-Heating Effects in Nanoscale Devices (Hardcover)
Katerina Raleva, Abdul Rawoof Sheik, Dragica Vasileska, Stephen M. Goodnick
R3,158 Discovery Miles 31 580 Ships in 10 - 15 working days

It is generally acknowledged that modeling and simulation are preferred alternatives to trial and error approaches to semiconductor fabrication in the present environment, where the cost of process runs and associated mask sets is increasing exponentially with successive technology nodes. Hence, accurate physical device simulation tools are essential to accurately predict device and circuit performance. Accurate thermal modelling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modelling methods that must be employed in order to determine a device's temperature profile.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Guilty And Proud - An MK Soldier's…
Marion Sparg Paperback R330 R240 Discovery Miles 2 400
Snappy Tritan Bottle (1.5L)(Green)
R229 R180 Discovery Miles 1 800
Tommy Hilfiger - Tommy Cologne Spray…
R1,218 R694 Discovery Miles 6 940
A Seed Of A Dream - Morris Isaacson High…
Clive Glaser Paperback R265 R195 Discovery Miles 1 950
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300
Bestway Beach Ball (51cm)
 (2)
R26 Discovery Miles 260
Shield Fresh 24 Mist Spray (Vanilla…
R19 Discovery Miles 190
Faber-Castell Minibox 1 Hole Sharpener…
R10 Discovery Miles 100
Efekto 77300-G Nitrile Gloves (L)(Green)
R63 Discovery Miles 630

 

Partners