0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Simulation-Based Optimization - Parametric Optimization Techniques and Reinforcement Learning (Hardcover, 2nd ed. 2015):... Simulation-Based Optimization - Parametric Optimization Techniques and Reinforcement Learning (Hardcover, 2nd ed. 2015)
Abhijit Gosavi
R4,342 Discovery Miles 43 420 Ships in 10 - 15 working days

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques - especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: * Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) * Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics * An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata * A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters - Static Simulation Optimization, Reinforcement Learning and Convergence Analysis - this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.

Simulation-Based Optimization - Parametric Optimization Techniques and Reinforcement Learning (Paperback, Softcover reprint of... Simulation-Based Optimization - Parametric Optimization Techniques and Reinforcement Learning (Paperback, Softcover reprint of the original 2nd ed. 2015)
Abhijit Gosavi
R4,475 Discovery Miles 44 750 Ships in 18 - 22 working days

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques - especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: * Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) * Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics * An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata * A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters - Static Simulation Optimization, Reinforcement Learning and Convergence Analysis - this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Goldair Oscillating Desk Fan (40cm)
R597 Discovery Miles 5 970
Loot
Nadine Gordimer Paperback  (2)
R367 R340 Discovery Miles 3 400
Grohanger White - 4 Pack
R78 Discovery Miles 780
Casio LW-200-7AV Watch with 10-Year…
R999 R899 Discovery Miles 8 990
Amsterdam
Christian Bale, Margot Robbie, … DVD R210 Discovery Miles 2 100
First Dutch Brands 12in Hanging Basket…
R120 Discovery Miles 1 200
380GSM Golf Towel (30x50cm)(3…
R179 Discovery Miles 1 790
Volkano Sustain 5200mAh Mini UPS (Black…
R688 Discovery Miles 6 880
Loot
Nadine Gordimer Paperback  (2)
R367 R340 Discovery Miles 3 400
ZA Key Ring Pendant with Sound and Light
R199 Discovery Miles 1 990

 

Partners