0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Simulation-Based Optimization - Parametric Optimization Techniques and Reinforcement Learning (Hardcover, 2nd ed. 2015):... Simulation-Based Optimization - Parametric Optimization Techniques and Reinforcement Learning (Hardcover, 2nd ed. 2015)
Abhijit Gosavi
R4,614 Discovery Miles 46 140 Ships in 12 - 19 working days

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques - especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: * Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) * Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics * An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata * A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters - Static Simulation Optimization, Reinforcement Learning and Convergence Analysis - this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.

Simulation-Based Optimization - Parametric Optimization Techniques and Reinforcement Learning (Paperback, Softcover reprint of... Simulation-Based Optimization - Parametric Optimization Techniques and Reinforcement Learning (Paperback, Softcover reprint of the original 2nd ed. 2015)
Abhijit Gosavi
R4,852 Discovery Miles 48 520 Ships in 10 - 15 working days

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques - especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: * Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) * Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics * An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata * A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters - Static Simulation Optimization, Reinforcement Learning and Convergence Analysis - this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Atlas of X-Linked Intellectual…
Roger E. Stevenson, Charles E. Schwartz, … Hardcover R6,268 Discovery Miles 62 680
Corporate Taxation, Group Debt Funding…
Gianluigi Bizioli, Mario Grandinetti, … Hardcover R4,695 Discovery Miles 46 950
Bank Collections and Payment…
Benjamin Geva Hardcover R4,212 Discovery Miles 42 120
Collective Bargaining in Labour Law…
Ulla Liukkunen Hardcover R2,961 R2,430 Discovery Miles 24 300
Imaging in Movement Disorders: Imaging…
Marios Politis Hardcover R4,804 Discovery Miles 48 040
Cerebral Palsy in Infancy - targeted…
Roberta B. Shepherd Hardcover R1,653 Discovery Miles 16 530
Effects of Peri-Adolescent Licit and…
Richard L. Bell, Shafiqurrahman Hardcover R5,723 R4,790 Discovery Miles 47 900
International Review of Research in…
Robert M. Hodapp, Deborah J. Fidler Hardcover R4,785 Discovery Miles 47 850
Software-Defined Wide Area Network…
Cheng Sheng, Jie Bai, … Hardcover R3,418 Discovery Miles 34 180
Disciple - Walking With God
Rorisang Thandekiso, Nkhensani Manabe Paperback  (1)
R280 R263 Discovery Miles 2 630

 

Partners