![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
Applies concepts and theorems from real and complex analysis (e.g. Fourier series; implicit function theorem) and topology in the framework of this key theorem from mathematical physics. Covers all aspects of Arnold's proof, including those often left out in more general or simplified presentations. Discusses, in detail, the ideas used in the proof of the KAM theorem and puts them in historical context (e.g. mapping degree from algebraic topology).
This textbook gives an introduction to fluid dynamics based on flows for which analytical solutions exist, like individual vortices, vortex streets, vortex sheets, accretions disks, wakes, jets, cavities, shallow water waves, bores, tides, linear and non-linear free-surface waves, capillary waves, internal gravity waves and shocks. Advanced mathematical techniques ("calculus") are introduced and applied to obtain these solutions, mostly from complex function theory (Schwarz-Christoffel theorem and Wiener-Hopf technique), exterior calculus, singularity theory, asymptotic analysis, the theory of linear and nonlinear integral equations and the theory of characteristics. Many of the derivations, so far contained only in research journals, are made available here to a wider public.
This textbook gives an introduction to fluid dynamics based on flows for which analytical solutions exist, like individual vortices, vortex streets, vortex sheets, accretions disks, wakes, jets, cavities, shallow water waves, bores, tides, linear and non-linear free-surface waves, capillary waves, internal gravity waves and shocks. Advanced mathematical techniques ("calculus") are introduced and applied to obtain these solutions, mostly from complex function theory (Schwarz-Christoffel theorem and Wiener-Hopf technique), exterior calculus, singularity theory, asymptotic analysis, the theory of linear and nonlinear integral equations and the theory of characteristics. Many of the derivations, so far contained only in research journals, are made available here to a wider public.
Nur selten gelangt NATURBESCHREIBUNG als mathematische Erfassung realer Vorgaenge zu solcher Einheit wie in der Mechanik. Newtons Axiom F=ma fuer den Massenpunkt entfaltet sich zu den Euler-Lagrangeschen und Hamiltonschen Bewegungsgleichungen und schliesslich zum Liouvilleschen Satz fuer den Phasenraumfluss. Die parallele Entwicklung in der Mathematik fuehrt von der Analysis im R DEGREES3 ueber die Variationsrechnung zu differenzierbaren Mannigfaltigkeiten. Das Buch gliedert diese Theorie in ueberschaubare formale Schritte -- jedes Argument ist kuerzer als eine Textzeile -- und versucht durch dieses "formelhafte" Vorgehen das Erlernen des Stoffs zu erleichtern. "
|
![]() ![]() You may like...
|