![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Since the year 2000, we have witnessed several outstanding results in geometry that have solved long-standing problems such as the Poincare conjecture, the Yau-Tian-Donaldson conjecture, and the Willmore conjecture. There are still many important and challenging unsolved problems including, among others, the Strominger-Yau-Zaslow conjecture on mirror symmetry, the relative Yau-Tian-Donaldson conjecture in Kahler geometry, the Hopf conjecture, and the Yau conjecture on the first eigenvalue of an embedded minimal hypersurface of the sphere. For the younger generation to approach such problems and obtain the required techniques, it is of the utmost importance to provide them with up-to-date information from leading specialists.The geometry conference for the friendship of China and Japan has achieved this purpose during the past 10 years. Their talks deal with problems at the highest level, often accompanied with solutions and ideas, which extend across various fields in Riemannian geometry, symplectic and contact geometry, and complex geometry.
Since the year 2000, we have witnessed several outstanding results in geometry that have solved long-standing problems such as the Poincare conjecture, the Yau-Tian-Donaldson conjecture, and the Willmore conjecture. There are still many important and challenging unsolved problems including, among others, the Strominger-Yau-Zaslow conjecture on mirror symmetry, the relative Yau-Tian-Donaldson conjecture in Kahler geometry, the Hopf conjecture, and the Yau conjecture on the first eigenvalue of an embedded minimal hypersurface of the sphere. For the younger generation to approach such problems and obtain the required techniques, it is of the utmost importance to provide them with up-to-date information from leading specialists.The geometry conference for the friendship of China and Japan has achieved this purpose during the past 10 years. Their talks deal with problems at the highest level, often accompanied with solutions and ideas, which extend across various fields in Riemannian geometry, symplectic and contact geometry, and complex geometry.
These notes present very recent results on compact K hler-Einstein manifolds of positive scalar curvature. A central role is played here by a Lie algebra character of the complex Lie algebra consisting of all holomorphic vector fields, which can be intrinsically defined on any compact complex manifold and becomes an obstruction to the existence of a K hler-Einstein metric. Recent results concerning this character are collected here, dealing with its origin, generalizations, sufficiency for the existence of a K hler-Einstein metric and lifting to a group character. Other related topics such as extremal K hler metrics studied by Calabi and others and the existence results of Tian and Yau are also reviewed. As the rudiments of K hlerian geometry and Chern-Simons theory are presented in full detail, these notes are accessible to graduate students as well as to specialists of the subject.
|
![]() ![]() You may like...
Avengers: 4-Movie Collection - The…
Robert Downey Jr., Chris Evans, …
Blu-ray disc
R589
Discovery Miles 5 890
|