![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
In July 2009, many experts in the mathematical modeling of
biological sciences gathered in Les Houches for a 4-week summer
school on the mechanics and physics of biological systems. The goal
of the school was to present to students and researchers an
integrated view of new trends and challenges in physical and
mathematical aspects of biomechanics. While the scope for such a
topic is very wide, they focused on problems where solid and fluid
mechanics play a central role. The school covered both the general
mathematical theory of mechanical biology in the context of
continuum mechanics but also the specific modeling of particular
systems in the biology of the cell, plants, microbes, and in
physiology.
This monograph presents a general mathematical theory for biological growth. It provides both a conceptual and a technical foundation for the understanding and analysis of problems arising in biology and physiology. The theory and methods are illustrated on a wide range of examples and applications. A process of extreme complexity, growth plays a fundamental role in many biological processes and is considered to be the hallmark of life itself. Its description has been one of the fundamental problems of life sciences, but until recently, it has not attracted much attention from mathematicians, physicists, and engineers. The author herein presents the first major technical monograph on the problem of growth since D'Arcy Wentworth Thompson's 1917 book On Growth and Form. The emphasis of the book is on the proper mathematical formulation of growth kinematics and mechanics. Accordingly, the discussion proceeds in order of complexity and the book is divided into five parts. First, a general introduction on the problem of growth from a historical perspective is given. Then, basic concepts are introduced within the context of growth in filamentary structures. These ideas are then generalized to surfaces and membranes and eventually to the general case of volumetric growth. The book concludes with a discussion of open problems and outstanding challenges. Thoughtfully written and richly illustrated to be accessible to readers of varying interests and background, the text will appeal to life scientists, biophysicists, biomedical engineers, and applied mathematicians alike.
This monograph presents a general mathematical theory for biological growth. It provides both a conceptual and a technical foundation for the understanding and analysis of problems arising in biology and physiology. The theory and methods are illustrated on a wide range of examples and applications. A process of extreme complexity, growth plays a fundamental role in many biological processes and is considered to be the hallmark of life itself. Its description has been one of the fundamental problems of life sciences, but until recently, it has not attracted much attention from mathematicians, physicists, and engineers. The author herein presents the first major technical monograph on the problem of growth since D'Arcy Wentworth Thompson's 1917 book On Growth and Form. The emphasis of the book is on the proper mathematical formulation of growth kinematics and mechanics. Accordingly, the discussion proceeds in order of complexity and the book is divided into five parts. First, a general introduction on the problem of growth from a historical perspective is given. Then, basic concepts are introduced within the context of growth in filamentary structures. These ideas are then generalized to surfaces and membranes and eventually to the general case of volumetric growth. The book concludes with a discussion of open problems and outstanding challenges. Thoughtfully written and richly illustrated to be accessible to readers of varying interests and background, the text will appeal to life scientists, biophysicists, biomedical engineers, and applied mathematicians alike.
Mathematics is playing an increasing important role in society and the sciences, enhancing our ability to use models and handle data. While pure mathematics is mostly interested in abstract structures, applied mathematics sits at the interface between this abstract world and the world in which we live. This area of mathematics takes its nourishment from society and science and, in turn, provides a unified way to understand problems arising in diverse fields. This Very Short Introduction presents a compact yet comprehensive view of the field of applied mathematics, and explores its relationships with (pure) mathematics, science, and engineering. Explaining the nature of applied mathematics, Alain Goriely discusses its early achievements in physics and engineering, and its development as a separate field after World War II. Using historical examples, current applications, and challenges, Goriely illustrates the particular role that mathematics plays in the modern sciences today and its far-reaching potential. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
|
![]() ![]() You may like...
Mathematics Education in Singapore
Tin Lam Toh, Berinderjeet Kaur, …
Hardcover
R4,704
Discovery Miles 47 040
Rethinking School-to-Work Transitions in…
Barry Down, John Smyth, …
Hardcover
R1,598
Discovery Miles 15 980
Art as a Way of Listening - Centering…
Amanda Claudia Wager, Berta Rosa Berriz, …
Paperback
R1,256
Discovery Miles 12 560
|