![]() |
![]() |
Your cart is empty |
||
Showing 1 - 15 of 15 matches in All Departments
Advances in Biomembranes and Lipid Self-Assembly, Volume 36 serial highlights new advances in the field with this new volume presenting interesting chapters. Each chapter is written by an international board of authors.
Advances in Biomembranes and Lipid Self-Assembly, Volume 35, formerly titled Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for the study of cell membranes, lipid model membranes and lipid self-assemblies, from the micro- to the nanoscale. As planar lipid bilayers are widely studied due to their ubiquity in nature, this book presents research on their application in the formulation of biomimetic model membranes, and in the design of artificial dispersion of liposomes. Chapters cover Physical properties of SOPC lipid membranes containing cholesterol by molecular dynamics simulation, Exciting membrane fluctuations - more than thermal stimulation, Fluctuations shaping bio-membrane adhesion, and more.
Advances in Biomembranes and Lipid Self-Assembly, Volume 34, formerly titled Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for the study of cell membranes, lipid model membranes and lipid self-assemblies, from the micro- to the nanoscale. As planar lipid bilayers are widely studied due to their ubiquity in nature, this book presents research on their application in the formulation of biomimetic model membranes, and in the design of artificial dispersion of liposomes. Chapters cover Physical properties of SOPC lipid membranes containing cholesterol by molecular dynamics simulation, Exciting membrane fluctuations - more than thermal stimulation, Fluctuations shaping bio-membrane adhesion, and more.
Advances in Biomembranes and Lipid Self-Assembly, formerly titled Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes, and lipid self-assemblies from the micro- to the nanoscale. Planar lipid bilayers are widely studied due to their ubiquity in nature, also finding application in the formulation of biomimetic model membranes. Section topics in this release cover Ras Proteolipid nano-assemblies on the plasma membrane, gold nanomaterials, recent advances in cancer theranostics, and the interactions of flavonoids with lipidic mesophases, amongst other highly resourceful topics. Self-assembled lipid structures have enormous potential as dynamic materials, ranging from artificial lipid membranes, to cell membranes, from biosensing, to controlled drug delivery, and from pharmaceutical formulations, to novel food products, to name a few. This series represents both original research and comprehensive reviews written by world-leading experts and young researchers.
The Elsevier book series Advances in Biomembranes and Lipid Self-Assembly (previously titled Advances in Planar Lipid Bilayers and Liposomes), provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes, and lipid self-assemblies from the micro- to the nanoscale. Planar lipid bilayers are widely studied due to their ubiquity in nature and find their application in the formulation of biomimetic model membranes and in the design of artificial dispersion of liposomes. Moreover, lipids self-assemble into a wide range of other structures including micelles and the liquid crystalline hexagonal and cubic phases. Consensus has been reached that curved membrane phases do play an important role in nature as well, especially in dynamic processes such as vesicles fusion and cell communication. Self-assembled lipid structures have enormous potential as dynamic materials ranging from artificial lipid membranes to cell membranes, from biosensing to controlled drug delivery, from pharmaceutical formulations to novel food products to mention a few. An assortment of chapters in this volume represents both original research as well as comprehensive reviews written by world leading experts and young researchers.
The Elsevier book-series Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes and lipid self-assemblies from the micro- to the nanoscale. Planar lipid bilayers are widely studied due to their ubiquity in nature and find their application in the formulation of biomimetic model membranes and in the design of artificial dispersion of liposomes. Moreover, lipids self-assemble into a wide range of other structures including micelles and the liquid crystalline hexagonal and cubic phases. Consensus has been reached that curved membrane phases do play an important role in nature as well, especially in dynamic processes such as vesicles fusion and cell communication. Self-assembled lipid structures have enormous potential as dynamic materials ranging from artificial lipid membranes to cell membranes, from biosensing to controlled drug delivery, from pharmaceutical formulations to novel food products to mention a few. An assortment of chapters in APLBL represents both an original research as well as comprehensives reviews written by world leading experts and young researchers.
The Elsevier book-series "Advances in Planar Lipid Bilayers and Liposomes' (APLBL) provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes and lipid self-assemblies from the micro- to the nanoscale. Planar lipid bilayers are widely studied due to their ubiquity in nature and find their application in the formulation of biomimetic model membranes and in the design of artificial dispersion of liposomes. Moreover, lipids self-assemble into a wide range of other structures including micelles and the liquid crystalline hexagonal and cubic phases. Consensus has been reached that curved membrane phases do play an important role in nature as well, especially in dynamic processes such as vesicles fusion and cell communication. Self-assembled lipid structures have enormous potential as dynamic materials ranging from artificial lipid membranes to cell membranes, from biosensing to controlled drug delivery, from pharmaceutical formulations to novel food products to mention a few. An assortment of chapters in APLBL represents both an original research as well as comprehensives reviews written by world leading experts and young researchers.
Advances in Biomembranes and Lipid Self-Assembly, Volume 28, formerly titled Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for the study of cell membranes, lipid model membranes, and lipid self-assemblies, from the micro- to the nanoscale. Planar lipid bilayers are widely studied due to their ubiquity in nature. This book presents research on their application in the formulation of biomimetic model membranes, and in the design of artificial dispersion of liposomes. Moreover, the book discusses how lipids self-assemble into a wide range of other structures, including micelles and the liquid crystalline hexagonal and cubic phases. Chapters in this volume present both original research and comprehensive reviews written by world leading experts and young researchers.
Advances in Biomembranes and Lipid Self-Assembly, Volume 27, formerly titled Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes, and lipid self-assemblies from the micro- to the nanoscale. The assortment of chapters in this volume represents both original research and comprehensive reviews written by world leading experts and young researchers, with topics of note in this release including TiO2 Nanomaterials as Electrochemical Biosensors for Cancer, the Reconstitution of Ion Channels in Planar Lipid Bilayers: New Approaches, and Shear-Induced Lamellar/Onion Transition in Surfactant Systems.
Advances in Biomembranes and Lipid Self-Assembly, Volume 26, formerly titled Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes, and lipid self-assemblies from the micro- to the nanoscale. Chapters in this new release include sections on the Applicative use of electroporation models: from the molecular to the tissue level, Tubular membrane structures, Trends in Big Data Technologies, Biomedical application of TiO2+Gd nanostructures, and The metamorphic transformation of a water-soluble monomeric protein into an oligomeric transmembrane pore. An assortment of chapters in this volume represents both original research as well as comprehensive reviews written by world leading experts and young researchers.
Although the origin and the basic meaning of the terms "planar lipid bilayers" and "liposome" have not changed during the years, the present advances in the scientific, technological, biomedical and consumer product fields are remarkable. Ever since its launch the "Advances in Planar Lipid Bilayers and Liposomes' (APLBL) has provided a global platform for a community of researchers having very broad scientific interests in theoretical, experimental and simulation studies on lipid and cell membrane micro and nanostructures. Ranging from artificial lipid membranes to cell membranes, controlled release of functional molecules, drug delivery to cancer cells, pharmaceutical formulations to food products, the applications are simply enormous. An assortment of chapters in APLBL represents both an original research as well as comprehensives reviews written by world leading experts and young researchers.
Advances in Biomembranes and Lipid Self-assembly, Volume 31, formerly titled Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for the study of cell membranes, lipid model membranes and lipid self-assemblies, from the micro- to the nanoscale. As planar lipid bilayers are widely studied due to their ubiquity in nature, this book presents research on their application in the formulation of biomimetic model membranes, and in the design of artificial dispersion of liposomes. Moreover, the book discusses how lipids self-assemble into a wide range of other structures, including micelles and the liquid crystalline hexagonal and cubic phases. Chapters in this volume present both original research and comprehensive reviews written by world leading experts and young researchers.
Advances in Biomembranes and Lipid Self-Assembly, formerly titled Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes, and lipid self-assemblies from the micro- to the nanoscale. Planar lipid bilayers are widely studied due to their ubiquity in nature and find their application in the formulation of biomimetic model membranes, and in the design of artificial dispersion of liposomes. Moreover, lipids self-assemble into a wide range of other structures, including micelles and the liquid crystalline hexagonal and cubic phases. Consensus has been reached that curved membrane phases do play an important role in nature as well, especially in dynamic processes, such as vesicles fusion and cell communication. Self-assembled lipid structures have enormous potential as dynamic materials ranging from artificial lipid membranes to cell membranes, from biosensing to controlled drug delivery, from pharmaceutical formulations to novel food products to mention a few. An assortment of chapters in this volume represents both original research as well as comprehensive reviews written by world leading experts and young researchers.
Advances in Biomembranes and Lipid Self-Assembly, Volume 29, formerly titled Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for the study of cell membranes, lipid model membranes, and lipid self-assemblies, from the micro- to the nanoscale. As planar lipid bilayers are widely studied due to their ubiquity in nature, this book presents research on their application in the formulation of biomimetic model membranes, and in the design of artificial dispersion of liposomes. Moreover, the book discusses how lipids self-assemble into a wide range of other structures, including micelles and the liquid crystalline hexagonal and cubic phases. Chapters in this volume present both original research and comprehensive reviews written by world leading experts and young researchers.
This book is a survey on the theoretical as well as experimental results on nanostructures in biological systems. It shows how a unifying approach starting from single-particle energy, deriving free energy of the system and determining the equilibrium by minimizing the free energy, can be applied to describe electrical and elastic phenomena. It helps the readers to use this basic, transparent, and simple approach to develop additional new systems and interactions and describes the theoretical and experimental aspects together so that they support each other in broadening the knowledge on biological systems. It suggests potential use of this knowledge in clinically relevant phenomena such as hemostasis, inflammation, and spreading of cancer and describes some applications in nanotoxicology, such as the interactions between biological membranes and inorganic nanostructures.
|
![]() ![]() You may like...
Assessing and Managing Problematic…
Geraldine Akerman, Derek Perkins, …
Paperback
R919
Discovery Miles 9 190
Handbook of Children in the Legal System
Ginger C. Calloway, S. Margaret Lee
Paperback
R1,458
Discovery Miles 14 580
From Playground To Prostitute - Based On…
Elanie Kruger, Jaco Hough-Coetzee
Paperback
R486
Discovery Miles 4 860
An Intersectional Approach to Sex…
Reece M. Malone, Marla Renee Stewart, …
Hardcover
R4,180
Discovery Miles 41 800
Working with Offenders who View Online…
Lyne Piche, Anton Schweighofer
Hardcover
R4,161
Discovery Miles 41 610
|