Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
This monograph covers a multitude of concepts, results, and research topics originating from a classical moving-boundary problem in two dimensions (idealized Hele-Shaw flows, or classical Laplacian growth), which has strong connections to many exciting modern developments in mathematics and theoretical physics. Of particular interest are the relations between Laplacian growth and the infinite-size limit of ensembles of random matrices with complex eigenvalues; integrable hierarchies of differential equations and their spectral curves; classical and stochastic Loewner evolution and critical phenomena in two-dimensional statistical models; weak solutions of hyperbolic partial differential equations of singular-perturbation type; and resolution of singularities for compact Riemann surfaces with anti-holomorphic involution. The book also provides an abundance of exact classical solutions, many explicit examples of dynamics by conformal mapping as well as a solid foundation of potential theory. An extensive bibliography covering over twelve decades of results and an introduction rich in historical and biographical details complement the eight main chapters of this monograph. Given its systematic and consistent notation and background results, this book provides a self-contained resource. It is accessible to a wide readership, from beginner graduate students to researchers from various fields in natural sciences and mathematics.
This volume highlights the main results of the research performed within the network "Harmonic and Complex Analysis and its Applications" (HCAA), which was a five-year (2007-2012) European Science Foundation Programme intended to explore and to strengthen the bridge between two scientific communities: analysts with broad backgrounds in complex and harmonic analysis and mathematical physics, and specialists in physics and applied sciences. It coordinated actions for advancing harmonic and complex analysis and for expanding its application to challenging scientific problems. Particular topics considered by this Programme included conformal and quasiconformal mappings, potential theory, Banach spaces of analytic functions and their applications to the problems of fluid mechanics, conformal field theory, Hamiltonian and Lagrangian mechanics, and signal processing. This book is a collection of surveys written as a result of activities of the Programme and will be interesting and useful for professionals and novices in analysis and mathematical physics, as well as for graduate students. Browsing the volume, the reader will undoubtedly notice that, as the scope of the Programme is rather broad, there are many interrelations between the various contributions, which can be regarded as different facets of a common theme.
Our knowledge of objects of complex and potential analysis has been enhanced recently by ideas and constructions of theoretical and mathematical physics, such as quantum field theory, nonlinear hydrodynamics, material science. These are some of the themes of this refereed collection of papers, which grew out of the first conference of the European Science Foundation Networking Programme 'Harmonic and Complex Analysis and Applications' held in Norway 2007.
This monograph aims at giving a presentation of recent and new ideas that arise from the problems of planar fluid dynamics and which are interesting from the point of view of geometric function theory and potential theory. In particular, this book is concerned with geometric problems for Hele-Shaw flows. Also Hele-Shaw flows on parameter spaces (e.g., the TeichmA1/4ller space) are treated and connections with string theory are revealed. Ultimately, the interaction between several branches of complex and potential analysis, and planar fluid mechanics is discussed. For most parts of this book the background provided by graduate courses in real and complex analysis, in particular, the theory of conformal mappings and in fluid mechanics is assumed. There are some historical remarks concerning the people that have contributed to the topic. The book is as self-contained as possible.
This volume highlights the main results of the research performed within the network "Harmonic and Complex Analysis and its Applications" (HCAA), which was a five-year (2007-2012) European Science Foundation Programme intended to explore and to strengthen the bridge between two scientific communities: analysts with broad backgrounds in complex and harmonic analysis and mathematical physics, and specialists in physics and applied sciences. It coordinated actions for advancing harmonic and complex analysis and for expanding its application to challenging scientific problems. Particular topics considered by this Programme included conformal and quasiconformal mappings, potential theory, Banach spaces of analytic functions and their applications to the problems of fluid mechanics, conformal field theory, Hamiltonian and Lagrangian mechanics, and signal processing. This book is a collection of surveys written as a result of activities of the Programme and will be interesting and useful for professionals and novices in analysis and mathematical physics, as well as for graduate students. Browsing the volume, the reader will undoubtedly notice that, as the scope of the Programme is rather broad, there are many interrelations between the various contributions, which can be regarded as different facets of a common theme.
This monograph covers a multitude of concepts, results, and research topics originating from a classical moving-boundary problem in two dimensions (idealized Hele-Shaw flows, or classical Laplacian growth), which has strong connections to many exciting modern developments in mathematics and theoretical physics. Of particular interest are the relations between Laplacian growth and the infinite-size limit of ensembles of random matrices with complex eigenvalues; integrable hierarchies of differential equations and their spectral curves; classical and stochastic Loewner evolution and critical phenomena in two-dimensional statistical models; weak solutions of hyperbolic partial differential equations of singular-perturbation type; and resolution of singularities for compact Riemann surfaces with anti-holomorphic involution. The book also provides an abundance of exact classical solutions, many explicit examples of dynamics by conformal mapping as well as a solid foundation of potential theory. An extensive bibliography covering over twelve decades of results and an introduction rich in historical and biographical details complement the eight main chapters of this monograph. Given its systematic and consistent notation and background results, this book provides a self-contained resource. It is accessible to a wide readership, from beginner graduate students to researchers from various fields in natural sciences and mathematics.
The monograph is concerned with the modulus of families of curves on Riemann surfaces and its applications to extremal problems for conformal, quasiconformal mappings, and the extension of the modulus onto Teichmüller spaces. The main part of the monograph deals with extremal problems for compact classes of univalent conformal and quasiconformal mappings. Many of them are grouped around two-point distortion theorems. Montel's functions and functions with fixed angular derivatives are also considered. The last portion of problems is directed to the extension of the modulus varying the complex structure of the underlying Riemann surface that sheds some new light on the metric problems of Teichmüller spaces.
|
You may like...
|