![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields.
Probability theory is based on the notion of independence. The celebrated law of large numbers and the central limit theorem describe the asymptotics of the sum of independent variables. However, there are many models of strongly correlated random variables: for instance, the eigenvalues of random matrices or the tiles in random tilings. Classical tools of probability theory are useless to study such models. These lecture notes describe a general strategy to study the fluctuations of strongly interacting random variables. This strategy is based on the asymptotic analysis of Dyson-Schwinger (or loop) equations: the author will show how these equations are derived, how to obtain the concentration of measure estimates required to study these equations asymptotically, and how to deduce from this analysis the global fluctuations of the model. The author will apply this strategy in different settings: eigenvalues of random matrices, matrix models with one or several cuts, random tilings, and several matrices models.
This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields.
Biane, Philippe: Non-commutative stochastic calculus.-Voiculescu, Dan-Virgil: Lectures on free probability.- Guionnet, Alice: Large random matrices: Lectures on macroscopic asymptotics. "
Random matrix theory has developed in the last few years, in
connection with various fields of mathematics and physics. These
notes emphasize the relation with the problem of enumerating
complicated graphs, and the related large deviations questions.
Such questions are also closely related with the asymptotic
distribution of matrices, which is naturally defined in the context
of free probability and operator algebra.
The theory of random matrices plays an important role in many areas of pure mathematics and employs a variety of sophisticated mathematical tools (analytical, probabilistic and combinatorial). This diverse array of tools, while attesting to the vitality of the field, presents several formidable obstacles to the newcomer, and even the expert probabilist. This rigorous introduction to the basic theory is sufficiently self-contained to be accessible to graduate students in mathematics or related sciences, who have mastered probability theory at the graduate level, but have not necessarily been exposed to advanced notions of functional analysis, algebra or geometry. Useful background material is collected in the appendices and exercises are also included throughout to test the reader's understanding. Enumerative techniques, stochastic analysis, large deviations, concentration inequalities, disintegration and Lie algebras all are introduced in the text, which will enable readers to approach the research literature with confidence.
|
![]() ![]() You may like...
Transitioning to Affordable and Clean…
Edwin Constable
Hardcover
|