![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 8 of 8 matches in All Departments
Classical probability theory provides information about random walks after a fixed number of steps. For applications, however, it is more natural to consider random walks evaluated after a random number of steps. Examples are sequential analysis, queuing theory, storage and inventory theory, insurance risk theory, reliability theory, and the theory of contours. Stopped Random Walks: Limit Theorems and Applications shows how this theory can be used to prove limit theorems for renewal counting processes, first passage time processes, and certain two-dimenstional random walks, and to how these results are useful in various applications. This second edition offers updated content and an outlook on further results, extensions and generalizations. A new chapter examines nonlinear renewal processes in order to present the analagous theory for perturbed random walks, modeled as a random walk plus "noise."
Like its predecessor, this book starts from the premise that, rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to cover a number of subjects in detail, including chapters on inequalities, characteristic functions and convergence. This is followed by a thorough treatment of the three main subjects in probability theory: the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales. The new edition is comprehensively updated, including some new material as well as around a dozen new references.
This is the only book that gives a rigorous and comprehensive treatment with lots of examples, exercises, remarks on this particular level between the standard first undergraduate course and the first graduate course based on measure theory. There is no competitor to this book. The book can be used in classrooms as well as for self-study.
This is the only book that gives a rigorous and comprehensive treatment with lots of examples, exercises, remarks on this particular level between the standard first undergraduate course and the first graduate course based on measure theory. There is no competitor to this book. The book can be used in classrooms as well as for self-study.
Like its predecessor, this book starts from the premise that, rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to cover a number of subjects in detail, including chapters on inequalities, characteristic functions and convergence. This is followed by a thorough treatment of the three main subjects in probability theory: the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales. The new edition is comprehensively updated, including some new material as well as around a dozen new references.
Classical probability theory provides information about random walks after a fixed number of steps. For applications, however, it is more natural to consider random walks evaluated after a random number of steps. Examples are sequential analysis, queuing theory, storage and inventory theory, insurance risk theory, reliability theory, and the theory of contours. Stopped Random Walks: Limit Theorems and Applications shows how this theory can be used to prove limit theorems for renewal counting processes, first passage time processes, and certain two-dimenstional random walks, and to how these results are useful in various applications. This second edition offers updated content and an outlook on further results, extensions and generalizations. A new chapter examines nonlinear renewal processes in order to present the analagous theory for perturbed random walks, modeled as a random walk plus "noise."
|
You may like...
Natural Compounds as Therapeutic Agents…
Neville Vassallo
Hardcover
Silent Victories - The History and…
John W. Ward, Christian Warren
Hardcover
R2,065
Discovery Miles 20 650
The COVID-19 Disruption and the Global…
Vincenzo Atella, Pasquale Lucio Scandizzo
Paperback
R2,494
Discovery Miles 24 940
Nutritional Epidemiology of Breast…
Alvaro Luis Ronco, Eduardo de Stefani
Hardcover
R4,705
Discovery Miles 47 050
Assessing Quality of Life in Clinical…
Peter Fayers, Ron Hays
Hardcover
R4,321
Discovery Miles 43 210
Phytochemical Profiling of Commercially…
Alvaro Viljoen, Weiyang Chen, …
Hardcover
R3,015
Discovery Miles 30 150
Handbook on the Toxicology of Metals…
Gunnar F. Nordberg, Max Costa
Hardcover
R3,972
Discovery Miles 39 720
|