![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
The collection of papers in this volume represents recent advances in the under standing of the geometry and topology of singularities. The book covers a broad range of topics which are in the focus of contemporary singularity theory. Its idea emerged during two Singularities workshops held at the University of Lille (USTL) in 1999 and 2000. Due to the breadth of singularity theory, a single volume can hardly give the complete picture of today's progress. Nevertheless, this collection of papers provides a good snapshot of what is the state of affairs in the field, at the turn of the century. Several papers deal with global aspects of singularity theory. Classification of fam ilies of plane curves with prescribed singularities were among the first problems in algebraic geometry. Classification of plane cubics was known to Newton and classification of quartics was achieved by Klein at the end of the 19th century. The problem of classification of curves of higher degrees was addressed in numerous works after that. In the paper by Artal, Carmona and Cogolludo, the authors de scribe irreducible sextic curves having a singular point of type An (n > 15) and a large (Le. , :::: 18) sum of Milnor numbers of other singularities. They have discov ered many interesting properties of these families. In particular they have found new examples of so-called Zariski pairs, i. e.
The collection of papers in this volume represents recent advances in the under standing of the geometry and topology of singularities. The book covers a broad range of topics which are in the focus of contemporary singularity theory. Its idea emerged during two Singularities workshops held at the University of Lille (USTL) in 1999 and 2000. Due to the breadth of singularity theory, a single volume can hardly give the complete picture of today's progress. Nevertheless, this collection of papers provides a good snapshot of what is the state of affairs in the field, at the turn of the century. Several papers deal with global aspects of singularity theory. Classification of fam ilies of plane curves with prescribed singularities were among the first problems in algebraic geometry. Classification of plane cubics was known to Newton and classification of quartics was achieved by Klein at the end of the 19th century. The problem of classification of curves of higher degrees was addressed in numerous works after that. In the paper by Artal, Carmona and Cogolludo, the authors de scribe irreducible sextic curves having a singular point of type An (n > 15) and a large (Le. , :::: 18) sum of Milnor numbers of other singularities. They have discov ered many interesting properties of these families. In particular they have found new examples of so-called Zariski pairs, i. e.
Appearance of singularities is pervasive in many problems in topology, differential geometry, and algebraic geometry. This book concerns the study of singular spaces using techniques from a variety of areas of geometry and topology and the interactions among them. Expository chapters by well-known experts cover intersection homology, L2 cohomology and differential operators, topology of algebraic varieties, signatures and characteristic classes, mixed Hodge theory, and elliptic genera of singular complex and real algebraic varieties. The book concludes with a list of open problems.
Appearance of singularities is pervasive in many problems in topology, differential geometry, and algebraic geometry. This book concerns the study of singular spaces using techniques from a variety of areas of geometry and topology and the interactions among them. Expository chapters by well-known experts cover intersection homology, L2 cohomology and differential operators, topology of algebraic varieties, signatures and characteristic classes, mixed Hodge theory, and elliptic genera of singular complex and real algebraic varieties. The book concludes with a list of open problems.
|
![]() ![]() You may like...
Equations of Motion for Incompressible…
Tujin Kim, Daomin Cao
Hardcover
R3,666
Discovery Miles 36 660
Theory of Hypergeometric Functions
Kazuhiko Aomoto, Michitake Kita
Hardcover
R3,653
Discovery Miles 36 530
Continuous Nowhere Differentiable…
Marek Jarnicki, Peter Pflug
Hardcover
R3,683
Discovery Miles 36 830
Further Developments in Fractals and…
Julien Barral, Stephane Seuret
Hardcover
R3,618
Discovery Miles 36 180
Direct and Inverse Finite-Dimensional…
Manfred Moeller, Vyacheslav Pivovarchik
Hardcover
R3,663
Discovery Miles 36 630
Methods of Geometric Analysis in…
Alexander Brudnyi, Prof. Yuri Brudnyi Technion R&D Foundation Ltd
Hardcover
R3,190
Discovery Miles 31 900
Applied Statistics and Data Science…
Yogendra P. Chaubey, Salim Lahmiri, …
Hardcover
R5,082
Discovery Miles 50 820
|