Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
This monograph highlights the connection between the theory of neutron transport and the theory of non-local branching processes. By detailing this frequently overlooked relationship, the authors provide readers an entry point into several active areas, particularly applications related to general radiation transport. Cutting-edge research published in recent years is collected here for convenient reference. Organized into two parts, the first offers a modern perspective on the relationship between the neutron branching process (NBP) and the neutron transport equation (NTE), as well as some of the core results concerning the growth and spread of mass of the NBP. The second part generalizes some of the theory put forward in the first, offering proofs in a broader context in order to show why NBPs are as malleable as they appear to be. Stochastic Neutron Transport will be a valuable resource for probabilists, and may also be of interest to numerical analysts and engineers in the field of nuclear research.
This collection honours Ron Doney's work and includes invited articles by his collaborators and friends. After an introduction reviewing Ron Doney's mathematical achievements and how they have influenced the field, the contributed papers cover both discrete-time processes, including random walks and variants thereof, and continuous-time processes, including Le vy processes and diffusions. A good number of the articles are focused on classical fluctuation theory and its ramifications, the area for which Ron Doney is best known.
Stable Levy processes lie at the intersection of Levy processes and self-similar Markov processes. Processes in the latter class enjoy a Lamperti-type representation as the space-time path transformation of so-called Markov additive processes (MAPs). This completely new mathematical treatment takes advantage of the fact that the underlying MAP for stable processes can be explicitly described in one dimension and semi-explicitly described in higher dimensions, and uses this approach to catalogue a large number of explicit results describing the path fluctuations of stable Levy processes in one and higher dimensions. Written for graduate students and researchers in the field, this book systemically establishes many classical results as well as presenting many recent results appearing in the last decade, including previously unpublished material. Topics explored include first hitting laws for a variety of sets, path conditionings, law-preserving path transformations, the distribution of extremal points, growth envelopes and winding behaviour.
Motivated by the many and long-standing contributions of H. Gerber and E. Shiu, this book gives a modern perspective on the problem of ruin for the classical Cramer-Lundberg model and the surplus of an insurance company. The book studies martingales and path decompositions, which are the main tools used in analysing the distribution of the time of ruin, the wealth prior to ruin and the deficit at ruin. Recent developments in exotic ruin theory are also considered. In particular, by making dividend or tax payments out of the surplus process, the effect on ruin is explored. Gerber-Shiu Risk Theory can be used as lecture notes and is suitable for a graduate course. Each chapter corresponds to approximately two hours of lectures.
This is the second volume in a subseries of the Lecture Notes in Mathematics called Levy Matters, which is published at irregular intervals over the years. Each volume examines a number of key topics in the theory or applications of Levy processes and pays tribute to the state of the art of this rapidly evolving subject with special emphasis on the non-Brownian world. The expository articles in this second volume cover two important topics in the area of Levy processes. The first article by Serge Cohen reviews the most important findings on fractional Levy fields to date in a self-contained piece, offering a theoretical introduction as well as possible applications and simulation techniques. The second article, by Alexey Kuznetsov, Andreas E. Kyprianou, and Victor Rivero, presents an up to date account of the theory and application of scale functions for spectrally negative Levy processes, including an extensive numerical overview.
This collection honours Ron Doney's work and includes invited articles by his collaborators and friends. After an introduction reviewing Ron Doney's mathematical achievements and how they have influenced the field, the contributed papers cover both discrete-time processes, including random walks and variants thereof, and continuous-time processes, including Le vy processes and diffusions. A good number of the articles are focused on classical fluctuation theory and its ramifications, the area for which Ron Doney is best known.
Levy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their application appears in the theory of many areas of classical and modern stochastic processes including storage models, renewal processes, insurance risk models, optimal stopping problems, mathematical finance, continuous-state branching processes and positive self-similar Markov processes. This textbook is based on a series of graduate courses concerning the theory and application of Levy processes from the perspective of their path fluctuations. Central to the presentation is the decomposition of paths in terms of excursions from the running maximum as well as an understanding of short- and long-term behaviour. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Levy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical tractability. The second edition additionally addresses recent developments in
the potential analysis of subordinators, Wiener-Hopf theory, the
theory of scale functions and their application to ruin theory, as
well as including an extensive overview of the classical and modern
theory of positive self-similar Markov processes. Each chapter has
a comprehensive set of exercises.
|
You may like...
|