![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
Computerarchitecturepresentlyfacesanunprecedentedrevolution: Thestep from monolithic processors towards multi-core ICs, motivated by the ever - creasingneedforpowerandenergyef ciencyinnanoelectronics. Whetheryou prefer to call it MPSoC (multi-processor system-on-chip) or CMP (chip mul- processor), no doubt this revolution affects large domains of both computer science and electronics, and it poses many new interdisciplinary challenges. For instance, ef cient programming models and tools for MPSoC are largely an open issue: "Multi-core platforms are a reality - but where is the software support" (R. Lauwereins, IMEC). Solving it will require enormous research efforts as well as the education of a whole new breed of software engineers that bring the results from universities into industrial practice. Atthesametime, thedesignofcomplexMPSoCarchitecturesisanextremely time-consuming task, particularly in the wireless and multimedia application domains, where heterogeneous architectures are predominant. Due to the - ploding NRE and mask costs most companies are now following a platform approach: Invest a large (but one-time) design effort into a proper core - chitecture, and create easy-to-design derivatives for new standards or product features. Needless to say, only the most ef cient MPSoC platforms have a real chance to enjoy a multi-year lifetime on the highly competitive semiconductor market for embedded systems.
Computerarchitecturepresentlyfacesanunprecedentedrevolution: Thestep from monolithic processors towards multi-core ICs, motivated by the ever - creasingneedforpowerandenergyef ciencyinnanoelectronics. Whetheryou prefer to call it MPSoC (multi-processor system-on-chip) or CMP (chip mul- processor), no doubt this revolution affects large domains of both computer science and electronics, and it poses many new interdisciplinary challenges. For instance, ef cient programming models and tools for MPSoC are largely an open issue: "Multi-core platforms are a reality - but where is the software support" (R. Lauwereins, IMEC). Solving it will require enormous research efforts as well as the education of a whole new breed of software engineers that bring the results from universities into industrial practice. Atthesametime, thedesignofcomplexMPSoCarchitecturesisanextremely time-consuming task, particularly in the wireless and multimedia application domains, where heterogeneous architectures are predominant. Due to the - ploding NRE and mask costs most companies are now following a platform approach: Invest a large (but one-time) design effort into a proper core - chitecture, and create easy-to-design derivatives for new standards or product features. Needless to say, only the most ef cient MPSoC platforms have a real chance to enjoy a multi-year lifetime on the highly competitive semiconductor market for embedded systems.
|
You may like...
How Not To Mess Up Online - A Teenager's…
Emma Sadleir, Rorke Wilson
Paperback
How to Get Strong and How to Stay so…
William 1843-1904 Blaikie
Hardcover
R739
Discovery Miles 7 390
Beyond Stoicism - A Guide To The Good…
Massimo Pigliucci, Gregory Lopez, …
Paperback
|