Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
This textbook takes the reader on a tour of the most important landmarks of theoretical physics: classical, quantum, and statistical mechanics, relativity, electrodynamics, as well as the most modern and exciting of all: elementary particles and the physics of fractals. The second edition has been supplemented with a new chapter devoted to concise though complete presentation of dynamical systems, bifurcations and chaos theory. The treatment is confined to the essentials of each area, presenting all the central concepts and equations at an accessible level. Chapters 1 to 4 contain the standard material of courses in theoretical physics and are supposed to accompany lectures at the university; thus they are rather condensed. They are supposed to fill one year of teaching. Chapters 5 and 6, in contrast, are written less condensed since this material may not be part of standard lectures and thus could be studied without the help of a university teacher. An appendix on elementary particles lies somewhere in between: It could be a summary of a much more detailed course, or studied without such a course. Illustrations and numerous problems round off this unusual textbook. It will ideally accompany the students all along their course in theoretical physics and prove indispensable in preparing and revising the exams. It is also suited as a reference for teachers or scientists from other disciplines who are interested in the topic.
What are the relations between the shape of a system of cities and that of fish school? Which events should happen in a cell in order that it participates to one of the finger of our hands? How to interpret the shape of a sand dune? This collective book written for the non-specialist addresses these questions and more generally, the fundamental issue of the emergence of forms and patterns in physical and living systems. It is a single book gathering the different aspects of morphogenesis and approaches developed in different disciplines on shape and pattern formation. Relying on the seminal works of D'Arcy Thompson, Alan Turing and Rene Thom, it confronts major examples like plant growth and shape, intra-cellular organization, evolution of living forms or motifs generated by crystals. A book essential to understand universal principles at work in the shapes and patterns surrounding us but also to avoid spurious analogies.
In this book, several world experts present (one part of) the mathematical heritage of Kolmogorov. Each chapter treats one of his research themes or a subject invented as a consequence of his discoveries. The authors present his contributions, his methods, the perspectives he opened to us, and the way in which this research has evolved up to now. Coverage also includes examples of recent applications and a presentation of the modern prospects.
During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos and turbulence. The chapters are jointly written by an experimentalist and a theorist. This book aims at a pedagogical overview, offering to the students and researchers a thorough conceptual background and a simple account of a wide range of applications. It presents a complete tour of both the formal advances and experimental results associated with the notion of scaling, in physics, chemistry and biology.
Through revealing photographs and accompanying text, this book offers an enchanting and beautiful glimpse into the inner life of the Institut des Hautes Etudes Scientifiques (IHES). The IHES in France is an institute of advanced research in mathematics and theoretical physics with an interest in epistemology and the history of science. It provides exceptionally gifted scientists with a place where they can devote themselves entirely to their research, free of teaching and administrative constraints, and offers them the opportunity to invite visitors with whom they wish to work.
This textbook takes the reader on a tour of the most important landmarks of theoretical physics: classical, quantum, and statistical mechanics, relativity, electrodynamics, as well as the most modern and exciting of all: elementary particles and the physics of fractals. The second edition has been supplemented with a new chapter devoted to concise though complete presentation of dynamical systems, bifurcations and chaos theory. The treatment is confined to the essentials of each area, presenting all the central concepts and equations at an accessible level. Chapters 1 to 4 contain the standard material of courses in theoretical physics and are supposed to accompany lectures at the university; thus they are rather condensed. They are supposed to fill one year of teaching. Chapters 5 and 6, in contrast, are written less condensed since this material may not be part of standard lectures and thus could be studied without the help of a university teacher. An appendix on elementary particles lies somewhere in between: It could be a summary of a much more detailed course, or studied without such a course. Illustrations and numerous problems round off this unusual textbook. It will ideally accompany the students all along their course in theoretical physics and prove indispensable in preparing and revising the exams. It is also suited as a reference for teachers or scientists from other disciplines who are interested in the topic.
What are the relations between the shape of a system of cities and that of fish school? Which events should happen in a cell in order that it participates to one of the finger of our hands? How to interpret the shape of a sand dune? This collective book written for the non-specialist addresses these questions and more generally, the fundamental issue of the emergence of forms and patterns in physical and living systems. It is a single book gathering the different aspects of morphogenesis and approaches developed in different disciplines on shape and pattern formation. Relying on the seminal works of D'Arcy Thompson, Alan Turing and Rene Thom, it confronts major examples like plant growth and shape, intra-cellular organization, evolution of living forms or motifs generated by crystals. A book essential to understand universal principles at work in the shapes and patterns surrounding us but also to avoid spurious analogies.
During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos and turbulence. The chapters are jointly written by an experimentalist and a theorist. This book aims at a pedagogical overview, offering to the students and researchers a thorough conceptual background and a simple account of a wide range of applications. It presents a complete tour of both the formal advances and experimental results associated with the notion of scaling, in physics, chemistry and biology.
While statistical mechanics describe the equilibrium state of systems with many degrees of freedom, and dynamical systems explain the irregular evolution of systems with few degrees of freedom, new tools are needed to study the evolution of systems with many degrees of freedom. This book presents the basic aspects of chaotic systems, with emphasis on systems composed by huge numbers of particles. Firstly, the basic concepts of chaotic dynamics are introduced, moving on to explore the role of ergodicity and chaos for the validity of statistical laws, and ending with problems characterized by the presence of more than one significant scale. Also discussed is the relevance of many degrees of freedom, coarse graining procedure, and instability mechanisms in justifying a statistical description of macroscopic bodies. Introducing the tools to characterize the non asymptotic behaviors of chaotic systems, this text will interest researchers and graduate students in statistical mechanics and chaos.
In this book, several world experts present (one part of) the mathematical heritage of Kolmogorov. Each chapter treats one of his research themes or a subject invented as a consequence of his discoveries. The authors present his contributions, his methods, the perspectives he opened to us, and the way in which this research has evolved up to now. Coverage also includes examples of recent applications and a presentation of the modern prospects.
|
You may like...
|