Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
This body of work represents the first volume of a book series covering the field of tissue engineering. Tissue engineering, which refers to a category of therapeutic or diagnostic products and processes which are based upon a combination of living cells and biomaterials, was defined as a field only a few years ago (1988). Tissue engineering is an inherently interdisciplinary field, combining bioengineering, life sciences and clinical sciences. The definition of this area of work as the field of tissue engineering brought together scientists from multiple backgrounds who already were working toward the achievement of similar goals. Why a book series exclusively devoted to tissue engineering? The field of tissue engineering is heterogeneous. The cells involved in tissue engineering can be autologous, allogeneic or xenogeneic. The biomaterials utilized can be either naturally occurring, synthetic or a combination of both. The appli cation of the technology can be either for acute or permanent purposes. An attempt to cover the field of tissue engineering in a single volume, with the degree of detail necessary for individuals with different scientific back grounds and disciplines, would be a difficult task to accomplish, particularly when this field is just emerging and changing rapidly. Therefore, addressing different technologies within the field of tissue engineering, in a comprehen sive manner, is the main mission of this series of volumes. A stellar group of scientists has been brought together to form the editorial board of the series."
First developed as an accessible abridgement of the successful
"Handbook of Stem Cells," "Essentials of Stem Cell Biology" serves
the needs of the evolving population of scientists, researchers,
practitioners, and students embracing the latest advances in stem
cells. Representing the combined effort of 7 editors and more than
200 scholars and scientists whose pioneering work has defined our
understanding of stem cells, this book combines the prerequisites
for a general understanding of adult and embryonic stem cells with
a presentation by the world's experts of the latest research
information about specific organ systems. From basic
biology/mechanisms, early development, ectoderm, mesoderm,
endoderm, and methods to theapplication of stem cells to specific
human diseases, regulation and ethics, and patient perspectives, no
topic in the field of stem cells is left uncovered.
New discoveries in the field of stem cells increasingly dominate
the news and scientific literature revealing an avalanche of new
knowledge and research tools that are producing therapies for
cancer, heart disease, diabetes, and a wide variety of other
diseases that afflict humanity. The Handbook of Stem Cells
integrates this exciting area of life science, combining in two
volumes the requisites for a general understanding of adult and
embryonic stem cells. Organized in two volumes entitled Pluripotent
Stem Cells & Cell Biology and Adult & Fetal Stem Cells,
this work contains contributions from the world s experts in stem
cell research to provide a description of the tools, methods, and
experimental protocols needed to study and characterize stem cells
and progenitor populations as well as a the latest information of
what is known about each specific organ system.
In 1996, the National Bladder Foundation (NBF) was founded by a dedicated group of physicians and researchers propeIled by the urgent need to find better treatments for bladder disease. Committed to increasing bladder disease research and to supporting its research community, the NBF coordinates and sponsors the International Bladder Symposium (IBS) in Washington, DC. Now considered to be a premier scientific assembly, the IBS brings together international leaders in bladder disease research to present and discuss their findings. It is the only international conference where all areas of bladder disease research are exclusively covered and where bladder disease researchers are provided with a unique opportunity to share their results and theories. IBS participants contributed the research papers included in this publication in 2000 and 2001. AIl substantial areas of bladder disease research are addressed, including oncology and ceIlular biology, neurophysiology, neurogenic bladder and incontinence, immunology, inflammation and infection, muscle, matrix and obstruction, and new frontiers and therapies of the bladder. Assembled in one publication, these papers and their findings demonstrate the high scientific caliber of the dedicated researchers in this field and the potential for significant discoveries in treatment options in the next decade.
Miniaturization in the fields of chemistry and molecular biology has resulted in the "lab-on-a-chip." Such systems are micro-fabricated devices capable of handling extremely small fluid volumes facilitating the scaling of single or multiple lab processes down to a microchip-sized format. The convergence of lab-on-a-chip technology with the field of cell biology facilitated the development of "organ-on-a-chip" systems. Such systems simulate the function of tissues and organs, having the potential to bypass some cell and animal testing methods. These technologies have generated high interest as applications for disease modeling and drug discovery. This book, edited by Drs. Sean Murphy and Anthony Atala, provides a comprehensive coverage of the technologies that have been used to develop organ-on-a-chip systems. Known leaders cover the basics to the most relevant and novel topics in the field, including micro-fabrication, 3D bio-printing, 3D cell culture techniques, biosensor design and microelectronics, micro-fluidics, data collection, and predictive analysis. The book describes specific tissue types amenable for disease modeling and drug discovery applications. Lung, liver, heart, skin and kidney "on-a-chip" technologies are included as well as a progress report on designing an entire "body-on-a-chip" system. Additionally, the book covers applications of various systems for modeling tissue-specific cancers, metastasis, and tumor microenvironments; and provides an overview of current and potential applications of these systems to disease modeling, toxicity testing, and individualized medicine.
Translating Regenerative Medicine to the Clinic reviews the current methodological tools and experimental approaches used by leading translational researchers, discussing the uses of regenerative medicine for different disease treatment areas, including cardiovascular disease, muscle regeneration, and regeneration of the bone and skin. Pedagogically, the book concentrates on the latest knowledge, laboratory techniques, and experimental approaches used by translational research leaders in this field. It promotes cross-disciplinary communication between the sub-specialties of medicine, but remains unified in theme by emphasizing recent innovations, critical barriers to progress, the new tools that are being used to overcome them, and specific areas of research that require additional study to advance the field as a whole. Volumes in the series include Translating Gene Therapy to the Clinic, Translating Regenerative Medicine to the Clinic, Translating MicroRNAs to the Clinic, Translating Biomarkers to the Clinic, and Translating Epigenetics to the Clinic.
Translational Regenerative Medicine is a reference book that outlines the life cycle for effective implementation of discoveries in the dynamic field of regenerative medicine. By addressing science, technology, development, regulatory, manufacturing, intellectual property, investment, financial, and clinical aspects of the field, this work takes a holistic look at the translation of science and disseminates knowledge for practical use of regenerative medicine tools, therapeutics, and diagnostics. Incorporating contributions from leaders in the fields of translational science across academia, industry, and government, this book establishes a more fluid transition for rapid translation of research to enhance human health and well-being.
This body of work represents the first volume of a book series covering the field of tissue engineering. Tissue engineering, which refers to a category of therapeutic or diagnostic products and processes which are based upon a combination of living cells and biomaterials, was defined as a field only a few years ago (1988). Tissue engineering is an inherently interdisciplinary field, combining bioengineering, life sciences and clinical sciences. The definition of this area of work as the field of tissue engineering brought together scientists from multiple backgrounds who already were working toward the achievement of similar goals. Why a book series exclusively devoted to tissue engineering? The field of tissue engineering is heterogeneous. The cells involved in tissue engineering can be autologous, allogeneic or xenogeneic. The biomaterials utilized can be either naturally occurring, synthetic or a combination of both. The appli cation of the technology can be either for acute or permanent purposes. An attempt to cover the field of tissue engineering in a single volume, with the degree of detail necessary for individuals with different scientific back grounds and disciplines, would be a difficult task to accomplish, particularly when this field is just emerging and changing rapidly. Therefore, addressing different technologies within the field of tissue engineering, in a comprehen sive manner, is the main mission of this series of volumes. A stellar group of scientists has been brought together to form the editorial board of the series."
Handbook of Tissue Engineering Scaffolds: Volume Two provides a comprehensive and authoritative review on recent advancements in the application and use of composite scaffolds in tissue engineering. Chapters focus on specific tissue/organ (mostly on the structure and anatomy), the materials used for treatment, natural composite scaffolds, synthetic composite scaffolds, fabrication techniques, innovative materials and approaches for scaffolds preparation, host response to the scaffolds, challenges and future perspectives, and more. Bringing all the information together in one major reference, the authors systematically review and summarize recent research findings, thus providing an in-depth understanding of scaffold use in different body systems.
Handbook of Tissue Engineering Scaffolds: Volume One, provides a comprehensive and authoritative review on recent advancements in the application and use of composite scaffolds in tissue engineering. Chapters focus on specific tissue/organ (mostly on the structure and anatomy), the materials used for treatment, natural composite scaffolds, synthetic composite scaffolds, fabrication techniques, innovative materials and approaches for scaffolds preparation, host response to the scaffolds, challenges and future perspectives, and more. Bringing all the information together in one major reference, the authors systematically review and summarize recent research findings, thus providing an in-depth understanding of scaffold use in different body systems.
Now in its fifth edition, Principles of Tissue Engineering has been the definite resource in the field of tissue engineering for more than a decade. The fifth edition provides an update on this rapidly progressing field, combining the prerequisites for a general understanding of tissue growth and development, the tools and theoretical information needed to design tissues and organs, as well as a presentation by the world's experts of what is currently known about each specific organ system. As in previous editions, this book creates a comprehensive work that strikes a balance among the diversity of subjects that are related to tissue engineering, including biology, chemistry, material science, and engineering, among others, while also emphasizing those research areas that are likely to be of clinical value in the future. This edition includes greatly expanded focus on stem cells, including induced pluripotent stem (iPS) cells, stem cell niches, and blood components from stem cells. This research has already produced applications in disease modeling, toxicity testing, drug development, and clinical therapies. This up-to-date coverage of stem cell biology and the application of tissue-engineering techniques for food production - is complemented by a series of new and updated chapters on recent clinical experience in applying tissue engineering, as well as a new section on the emerging technologies in the field.
Perinatal Stem Cells provides researchers and clinicians with a comprehensive description of the current clinical and pre-clinical applications of stem cells derived from perinatal sources, such as amniotic fluid, placenta and placental membranes, the umbilical cord and Wharton's jelly. It's compiled by leading experts in the field, offering readers detailed insights into sources of perinatal stem cells and their potential for disease treatment. Therapeutic applications of perinatal stem cells include the treatment of in utero and pregnancy related diseases, cardiac disease, liver disease, pulmonary disease, inflammatory diseases, for hematopoietic regeneration, and for neural protection after stroke or traumatic brain injury. In addition, the rapid advance in clinical translation and commercialization of perinatal stem cell therapies is highlighted in a section on Clinical and Industry Perspective which provides insight into the new opportunities and challenges involved in this novel and exciting industry.
In Situ Tissue Regeneration: Host Cell Recruitment and Biomaterial Design explores the body's ability to mobilize endogenous stem cells to the site of injury and details the latest strategies developed for inducing and supporting the body's own regenerating capacity. From the perspective of regenerative medicine and tissue engineering, this book describes the mechanism of host cell recruitment, cell sourcing, cellular and molecular roles in cell differentiation, navigational cues and niche signals, and a tissue-specific smart biomaterial system that can be applied to a wide range of therapies. The work is divided into four sections to provide a thorough overview and helpful hints for future discoveries: endogenous cell sources; biochemical and physical cues; smart biomaterial development; and applications.
Essentials of 3D Biofabrication and Translation discusses the techniques that are making bioprinting a viable alternative in regenerative medicine. The book runs the gamut of topics related to the subject, including hydrogels and polymers, nanotechnology, toxicity testing, and drug screening platforms, also introducing current applications in the cardiac, skeletal, and nervous systems, and organ construction. Leaders in clinical medicine and translational science provide a global perspective of the transformative nature of this field, including the use of cells, biomaterials, and macromolecules to create basic building blocks of tissues and organs, all of which are driving the field of biofabrication to transform regenerative medicine.
Miniaturization in the fields of chemistry and molecular biology has resulted in the "lab-on-a-chip." Such systems are micro-fabricated devices capable of handling extremely small fluid volumes facilitating the scaling of single or multiple lab processes down to a microchip-sized format. The convergence of lab-on-a-chip technology with the field of cell biology facilitated the development of "organ-on-a-chip" systems. Such systems simulate the function of tissues and organs, having the potential to bypass some cell and animal testing methods. These technologies have generated high interest as applications for disease modeling and drug discovery. This book, edited by Drs. Sean Murphy and Anthony Atala, provides a comprehensive coverage of the technologies that have been used to develop organ-on-a-chip systems. Known leaders cover the basics to the most relevant and novel topics in the field, including micro-fabrication, 3D bio-printing, 3D cell culture techniques, biosensor design and microelectronics, micro-fluidics, data collection, and predictive analysis. The book describes specific tissue types amenable for disease modeling and drug discovery applications. Lung, liver, heart, skin and kidney "on-a-chip" technologies are included as well as a progress report on designing an entire "body-on-a-chip" system. Additionally, the book covers applications of various systems for modeling tissue-specific cancers, metastasis, and tumor microenvironments; and provides an overview of current and potential applications of these systems to disease modeling, toxicity testing, and individualized medicine.
|
You may like...
|