Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
Basic Multivariable Calculus fills the need for a student-oriented text devoted exclusively to the third-semester course in multivariable calculus. In this text, the basic algebraic, analytic, and geometric concepts of multivariable and vector calculus are carefully explained, with an emphasis on developing the student's intuitive understanding and computational technique. A wealth of figures supports geometrical interpretation, while exercise sets, review sections, practice exams, and historical notes keep the students active in, and involved with, the mathematical ideas. All necessary linear algebra is developed within the text, and the material can be readily coordinated with computer laboratories. Basic Multivariable Calculus is the product of an extensive writing, revising, and class-testing collaboration by the authors of Calculus III (Springer-Verlag) and Vector Calculus (W.H. Freeman & Co.). Incorporating many features from these highly respected texts, it is both a synthesis of the authors' previous work and a new and original textbook.
Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateaus problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateaus problem have no interior branch points.
One of the most elementary questions in mathematics is whether an area minimizing surface spanning a contour in three space is immersed or not; i.e. does its derivative have maximal rank everywhere. The purpose of this monograph is to present an elementary proof of this very fundamental and beautiful mathematical result. The exposition follows the original line of attack initiated by Jesse Douglas in his Fields medal work in 1931, namely use Dirichlet's energy as opposed to area. Remarkably, the author shows how to calculate arbitrarily high orders of derivatives of Dirichlet's energy defined on the infinite dimensional manifold of all surfaces spanning a contour, breaking new ground in the Calculus of Variations, where normally only the second derivative or variation is calculated. The monograph begins with easy examples leading to a proof in a large number of cases that can be presented in a graduate course in either manifolds or complex analysis. Thus this monograph requires only the most basic knowledge of analysis, complex analysis and topology and can therefore be read by almost anyone with a basic graduate education.
One of the most elementary questions in mathematics is whether an area minimizing surface spanning a contour in three space is immersed or not; i.e. does its derivative have maximal rank everywhere. The purpose of this monograph is to present an elementary proof of this very fundamental and beautiful mathematical result. The exposition follows the original line of attack initiated by Jesse Douglas in his Fields medal work in 1931, namely use Dirichlet's energy as opposed to area. Remarkably, the author shows how to calculate arbitrarily high orders of derivatives of Dirichlet's energy defined on the infinite dimensional manifold of all surfaces spanning a contour, breaking new ground in the Calculus of Variations, where normally only the second derivative or variation is calculated. The monograph begins with easy examples leading to a proof in a large number of cases that can be presented in a graduate course in either manifolds or complex analysis. Thus this monograph requires only the most basic knowledge of analysis, complex analysis and topology and can therefore be read by almost anyone with a basic graduate education.
Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of "edge-crawling" along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integrals related to the area functional. In particular, far reaching Bernstein theorems are derived. The second part of the book contains what one might justly call a "global theory of minimal surfaces" as envisioned by Smale. First, the Douglas problem is treated anew by using Teichmuller theory. Secondly, various index theorems for minimal theorems are derived, and their consequences for the space of solutions to Plateaus problem are discussed. Finally, a topological approach to minimal surfaces via Fredholm vector fields in the spirit of Smale is presented.
Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateaus problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateaus problem have no interior branch points.
This book consists almost entirely of papers delivered at the Seminar on partial differential equations held at Max-Planck-Institut in the spring of 1984. They give an insight into important recent research activities. Some further developments are also included.
These lecture notes are based on the joint work of the author and Arthur Fischer on Teichmiiller theory undertaken in the years 1980-1986. Since then many of our colleagues have encouraged us to publish our approach to the subject in a concise format, easily accessible to a broad mathematical audience. However, it was the invitation by the faculty of the ETH Ziirich to deliver the ETH N achdiplom-Vorlesungen on this material which provided the opportunity for the author to develop our research papers into a format suitable for mathematicians with a modest background in differential geometry. We also hoped it would provide the basis for a graduate course stressing the application of fundamental ideas in geometry. For this opportunity the author wishes to thank Eduard Zehnder and Jiirgen Moser, acting director and director of the Forschungsinstitut fiir Mathematik at the ETH, Gisbert Wiistholz, responsible for the Nachdiplom Vorlesungen and the entire ETH faculty for their support and warm hospitality. This new approach to Teichmiiller theory presented here was undertaken for two reasons. First, it was clear that the classical approach, using the theory of extremal quasi-conformal mappings (in this approach we completely avoid the use of quasi-conformal maps) was not easily applicable to the theory of minimal surfaces, a field of interest of the author over many years. Second, many other active mathematicians, who at various times needed some Teichmiiller theory, have found the classical approach inaccessible to them.
Why does nature prefer some shapes and not others? The variety of sizes, shapes, and irregularities in nature is endless. Skillfully integrating striking full-color illustrations, the authors describe the efforts by scientists and mathematicians since the Renaissance to identify and describe the principles underlying the shape of natural forms. But can one set of laws account for both the symmetry and irregularity as well as the infinite variety of nature's designs? A complete answer to this question is likely never to be discovered. Yet, it is fascinating to see how the search for some simple universal laws down through the ages has increased our understanding of nature. The Parsimonious Universe looks at examples from the world around us at a non-mathematical, non-technical level to show that nature achieves efficiency by being stingy with the energy it expends.
|
You may like...
|