Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
The book attempts to provide a consistent treatment climate variability at time scales longer than interannual. The first describes the observed decadal variability when there are sufficient observational data for analysis, identifying the major phenomena that are mainly involved. The second part contains contributions describing the present level of understanding of decadal variability. Researchers and students will find the book useful as a reference, and scientists in related disciplines (geology, biogeochemistry, paleoclimatology) will have an overview of current knowledge.
Climatology and meteorology have basically been a descriptive science until it became possible to use numerical models, but it is crucial to the success of the strategy that the model must be a good representation of the real climate system of the Earth. Models are required to reproduce not only the mean properties of climate, but also its variability and the strong spatial relations between climate variability in geographically diverse regions. Quantitative techniques were developed to explore the climate variability and its relations between different geographical locations. Methods were borrowed from descriptive statistics, where they were developed to analyze variance of related observations-variable pairs, or to identify unknown relations between variables. A Guide to Empirical Orthogonal Functions for Climate Data Analysis uses a different approach, trying to introduce the reader to a practical application of the methods, including data sets from climate simulations and MATLAB codes for the algorithms. All pictures and examples used in the book may be reproduced by using the data sets and the routines available in the book . Though the main thrust of the book is for climatological examples, the treatment is sufficiently general that the discussion is also useful for students and practitioners in other fields. Supplementary datasets are available via http: //extra.springer.com
Volume 1 of a three-volume final report describes, synthesizes and analyzes the results of the four-year Integrated Research Project CIRCE - Climate Change and Impact Research: Mediterranean Environment, funded by the EU 6th Framework Programme. Conducted under the auspices of the National Institute of Geophysics and Volcanology in Rome, Italy, CIRCE was designed to predict and to quantify the physical impacts of climate change in the Mediterranean, and to assess the most influential consequences for the region's population. This volume incorporates the first two parts of the report, reviewing current knowledge of observed climate variability and trends in the Mediterranean, and including descriptions of available temperature and precipitation station and gridded data sets.
Volume 2 of a three-volume final report thoroughly describes, synthesizes and analyzes the results of the four-year Integrated Research Project CIRCE - Climate Change and Impact Research: Mediterranean Environment, funded by the EU 6th Framework Programme. Conducted under the auspices of the National Institute of Geophysics and Volcanology in Rome, Italy, CIRCE was designed to predict and to quantify the physical impacts of climate change in the Mediterranean, and to assess the most influential consequences for the region's population. This volume incorporates Parts 3 and 4 of the report, reviewing current knowledge of observed climate variability and trends in the Mediterranean, and including descriptions of available temperature and precipitation station and gridded data sets.
This is the third volume of a three-volume final report, which thoroughly describes, synthesizes and analyzes the results of the four-year Integrated Research Project CIRCE - Climate Change and Impact Research: Mediterranean Environment, funded by the EU 6th Framework Programme. Conducted under the auspices of the National Institute of Geophysics and Volcanology in Rome, Italy, the study was designed to predict and to quantify the physical impacts of climate change in the Mediterranean, and to assess the most influential consequences for the population of the region.
Volume 1 of a three-volume final report describes, synthesizes and analyzes the results of the four-year Integrated Research Project CIRCE - Climate Change and Impact Research: Mediterranean Environment, funded by the EU 6th Framework Programme. Conducted under the auspices of the National Institute of Geophysics and Volcanology in Rome, Italy, CIRCE was designed to predict and to quantify the physical impacts of climate change in the Mediterranean, and to assess the most influential consequences for the region's population. This volume incorporates the first two parts of the report, reviewing current knowledge of observed climate variability and trends in the Mediterranean, and including descriptions of available temperature and precipitation station and gridded data sets.
This is the third volume of a three-volume final report, which thoroughly describes, synthesizes and analyzes the results of the four-year Integrated Research Project CIRCE - Climate Change and Impact Research: Mediterranean Environment, funded by the EU 6th Framework Programme. Conducted under the auspices of the National Institute of Geophysics and Volcanology in Rome, Italy, the study was designed to predict and to quantify the physical impacts of climate change in the Mediterranean, and to assess the most influential consequences for the population of the region.
The interest and level of research into climate variability has risen dramatically in recent years, and major breakthroughs have been achieved in the understanding and modelling of seasonal to interannual climate variability and prediction. At the same time, the documentation of longer term variability and its underlying mecha nisms have progressed considerably. Within the European Commission's Environment and Climate research programs several important projects have been supported in these areas - including the "Dec adal and Interdecadal Climate variability Experiment" (DICE) which forms the basis of this book. Within the EC supported climate research, we see an increasing importance of research into climate variability, as is evidenced in the upcoming Fifth Framework Programme's Key Action on Global Change, Climate and Biodi versity. This is because of the obvious potential socio-economic benefits from sea sonal to decadal scale climate prediction and equally important for the fundamental understanding of the climate system to help improve the quality and reliability of future climate change and mankind's current interference with it. The DICE group has performed important and pioneering work, and we hope this book will receive the wide distribution and recognition it deserves. We wel come the contributions from distinguished researchers from US, Japan and Canada to the EC's DICE group towards completing the scope of the book and as an exam ple of international cooperation which is essential in such a high-level scientific endeavor."
|
You may like...
Palaces Of Stone - Uncovering Ancient…
Mike Main, Thomas Huffman
Paperback
Democracy Works - Re-Wiring Politics To…
Greg Mills, Olusegun Obasanjo, …
Paperback
Wits University At 100 - From Excavation…
Wits Communications
Paperback
|