0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Structured Electronic Design - Negative-feedback amplifiers (Hardcover, 2003 ed.): Chris J.M. Verhoeven, Arie van Staveren,... Structured Electronic Design - Negative-feedback amplifiers (Hardcover, 2003 ed.)
Chris J.M. Verhoeven, Arie van Staveren, G.L.E. Monna, M.H.L Kouwenhoven, E. Yildiz
R4,319 Discovery Miles 43 190 Ships in 12 - 19 working days

Analog design is one of the more difficult aspects of electrical engineering. The main reason is the apparently vague decisions an experienced designer makes in optimizing his circuit. To enable fresh designers, like students electrical engineering, to become acquainted with analog circuit design, structuring the analog design process is of utmost importance.
Structured Electronic Design: Negative-Feedback Amplifiers presents a design methodology for negative-feedback amplifiers. The design methodology enables to synthesize a topology and to, at the same time, optimize the performance of that topology.
Key issues in the design methodology are orthogonalization, hierarchy and simple models. Orthogonalization enables the separate optimization of the three fundamental quality aspects: noise, distortion and bandwidth. Hierarchy ensures that the right decisions are made at the correct level of abstraction. The use of simple models, results in simple calculations yielding maximum-performance indicators that can be used to reject wrong circuits relatively fast.
The presented design methodology divides the design of negative-feedback amplifiers in six independent steps. In the first two steps, the feedback network is designed. During those design steps, the active part is assumed to be a nullor, i.e. the performance with respect to noise, distortion and bandwidth is still ideal.
In the subsequent four steps, an implementation for the active part is synthesized. During those four steps the topology of the active part is synthesized such that optimum performance is obtained. Firstly, the input stage is designed with respect to noise performance. Secondly, the output stage isdesigned with respect to clipping distortion. Thirdly, the bandwidth performance is designed, which may require the addition of an additional amplifying stage. Finally, the biasing circuitry for biasing the amplifying stages is designed.
By dividing the design in independent design steps, the total global optimization is reduced to several local optimizations. By the specific sequence of the design steps, it is assured that the local optimizations yield a circuit that is close to the global optimum. On top of that, because of the separate dedicated optimizations, the resource use, like power, is tracked clearly.
Structured Electronic Design: Negative-Feedback Amplifiers presents in two chapters the background and an overview of the design methodology. Whereafter, in six chapters the separate design steps are treated with great detail. Each chapter comprises several exercises. An additional chapter is dedicated to how to design current sources and voltage source, which are required for the biasing. The final chapter in the book is dedicated to a thoroughly described design example, showing clearly the benefits of the design methodology.
In short, this book is valuable for M.Sc.-curriculum Electrical Engineering students, and of course, for researchers and designers who want to structure their knowledge about analog design further.

Structured Electronic Design - High-Performance Harmonic Oscillators and Bandgap References (Hardcover, 2001 ed.): Arie van... Structured Electronic Design - High-Performance Harmonic Oscillators and Bandgap References (Hardcover, 2001 ed.)
Arie van Staveren, Chris J.M. Verhoeven, Arthur H. M. van Roermund
R4,523 Discovery Miles 45 230 Ships in 10 - 15 working days

Analog design still has, unfortunately, a flavor of art. Art can be beautiful. However, art in itself is difficult to teach to students and difficult to transfer from experienced analog designers to new trainee designers in companies. Structured Electronic Design: High-Performance Harmonic Oscillators and Bandgap References aims to systemize analog design. The use of orthogonalization of the design of the fundamental quality aspects (noise, distortion, and bandwidth) and hierarchy in the subsequent design steps, enables designers to achieve high-performance designs, in a relatively short time. As a result of the systematic design procedure, the effect of design decisions on the circuit performance is made clear. Additionally, the use of resources for reaching a specified performance is tracked. This book, therefore, describes the structured electronic design of high-performance harmonic oscillators and bandgap references. The structured design of harmonic oscillators includes the maximization of the carrier-to- noise ratio by means of tapping, i.e. an impedance adaption method for noise matching. The bandgap reference, a popular implementation of a voltage reference, is studied via the unusual concept of the linear combination of base-emitter voltages. The presented method leads to the design of high-performance references in CMOS and Bipolar technology. Using this concept, on a high level of abstraction the quality with respect to, for instance, noise and power-supply rejection can be identified. In this book, it is shown with several design examples that this method provides an excellent starting point for the design of high-performance bandgap references. Auxiliary to the harmonic-oscillator and bandgap reference design are the negative- feedback amplifiers. In this book the systematic design of the dynamic behavior is emphasized. By means of the identification of the dominant poles, it is possible to give an upper limit of the attainable bandwidth, even before the real frequency compensation is accomplished. Structured Electronic Design: High-Performance Harmonic Oscillators and Bandgap References is a valuable book for researchers and designers, as well as students in the field of analog design. It helps both the experienced and trainee designer to come to grips with the design of analog circuits. The presented method is illustrated by several well- described design examples.

Structured Electronic Design - High-Performance Harmonic Oscillators and Bandgap References (Paperback, Softcover reprint of... Structured Electronic Design - High-Performance Harmonic Oscillators and Bandgap References (Paperback, Softcover reprint of the original 1st ed. 2001)
Arie van Staveren, Chris J.M. Verhoeven, Arthur H. M. van Roermund
R4,351 Discovery Miles 43 510 Ships in 10 - 15 working days

Analog design still has, unfortunately, a flavor of art. Art can be beautiful. However, art in itself is difficult to teach to students and difficult to transfer from experienced analog designers to new trainee designers in companies. Structured Electronic Design: High-Performance Harmonic Oscillators and Bandgap References aims to systemize analog design. The use of orthogonalization of the design of the fundamental quality aspects (noise, distortion, and bandwidth) and hierarchy in the subsequent design steps, enables designers to achieve high-performance designs, in a relatively short time. As a result of the systematic design procedure, the effect of design decisions on the circuit performance is made clear. Additionally, the use of resources for reaching a specified performance is tracked. This book, therefore, describes the structured electronic design of high-performance harmonic oscillators and bandgap references. The structured design of harmonic oscillators includes the maximization of the carrier-to- noise ratio by means of tapping, i.e. an impedance adaption method for noise matching. The bandgap reference, a popular implementation of a voltage reference, is studied via the unusual concept of the linear combination of base-emitter voltages. The presented method leads to the design of high-performance references in CMOS and Bipolar technology. Using this concept, on a high level of abstraction the quality with respect to, for instance, noise and power-supply rejection can be identified. In this book, it is shown with several design examples that this method provides an excellent starting point for the design of high-performance bandgap references. Auxiliary to the harmonic-oscillator and bandgap reference design are the negative- feedback amplifiers. In this book the systematic design of the dynamic behavior is emphasized. By means of the identification of the dominant poles, it is possible to give an upper limit of the attainable bandwidth, even before the real frequency compensation is accomplished. Structured Electronic Design: High-Performance Harmonic Oscillators and Bandgap References is a valuable book for researchers and designers, as well as students in the field of analog design. It helps both the experienced and trainee designer to come to grips with the design of analog circuits. The presented method is illustrated by several well- described design examples.

Structured Electronic Design - Negative-feedback amplifiers (Paperback, Softcover reprint of hardcover 1st ed. 2003): Chris... Structured Electronic Design - Negative-feedback amplifiers (Paperback, Softcover reprint of hardcover 1st ed. 2003)
Chris J.M. Verhoeven, Arie van Staveren, G.L.E. Monna, M.H.L Kouwenhoven, E. Yildiz
R4,131 Discovery Miles 41 310 Ships in 10 - 15 working days

Analog design is one of the more difficult aspects of electrical engineering. The main reason is the apparently vague decisions an experienced designer makes in optimizing his circuit. To enable fresh designers, like students electrical engineering, to become acquainted with analog circuit design, structuring the analog design process is of utmost importance. Structured Electronic Design: Negative-Feedback Amplifiers presents a design methodology for negative-feedback amplifiers. The design methodology enables to synthesize a topology and to, at the same time, optimize the performance of that topology. Key issues in the design methodology are orthogonalization, hierarchy and simple models. Orthogonalization enables the separate optimization of the three fundamental quality aspects: noise, distortion and bandwidth. Hierarchy ensures that the right decisions are made at the correct level of abstraction. The use of simple models, results in simple calculations yielding maximum-performance indicators that can be used to reject wrong circuits relatively fast. The presented design methodology divides the design of negative-feedback amplifiers in six independent steps. In the first two steps, the feedback network is designed. During those design steps, the active part is assumed to be a nullor, i.e. the performance with respect to noise, distortion and bandwidth is still ideal. In the subsequent four steps, an implementation for the active part is synthesized. During those four steps the topology of the active part is synthesized such that optimum performance is obtained. Firstly, the input stage is designed with respect to noise performance. Secondly, the output stage is designed with respect to clipping distortion. Thirdly, the bandwidth performance is designed, which may require the addition of an additional amplifying stage. Finally, the biasing circuitry for biasing the amplifying stages is designed. By dividing the design in independent design steps, the total global optimization is reduced to several local optimizations. By the specific sequence of the design steps, it is assured that the local optimizations yield a circuit that is close to the global optimum. On top of that, because of the separate dedicated optimizations, the resource use, like power, is tracked clearly. Structured Electronic Design: Negative-Feedback Amplifiers presents in two chapters the background and an overview of the design methodology. Whereafter, in six chapters the separate design steps are treated with great detail. Each chapter comprises several exercises. An additional chapter is dedicated to how to design current sources and voltage source, which are required for the biasing. The final chapter in the book is dedicated to a thoroughly described design example, showing clearly the benefits of the design methodology. In short, this book is valuable for M.Sc.-curriculum Electrical Engineering students, and of course, for researchers and designers who want to structure their knowledge about analog design further.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Larrikins, Rebels and Journalistic…
Josie Vine Hardcover R2,631 Discovery Miles 26 310
Churchill & Smuts - The Friendship
Richard Steyn Paperback  (6)
R320 R286 Discovery Miles 2 860
Brutal Legacy - A Memoir
Tracy Going Paperback  (4)
R453 Discovery Miles 4 530
Mapac ArtMate Case (A1)
R1,237 R1,155 Discovery Miles 11 550
Beeld 50 - Om 'n Groot Storie Hard Te…
Erika de Beer Paperback R395 R353 Discovery Miles 3 530
Mapac Designer Case Heavy Duty 70mm…
R1,714 R1,380 Discovery Miles 13 800
Win! - Compelling Conversations With 20…
Jeremy Maggs Paperback R491 Discovery Miles 4 910
The British Monopolies Commission
Charles K. Rowley Hardcover R9,908 Discovery Miles 99 080
The Great Trek Uncut - Escape From…
Robin Binckes Paperback R395 Discovery Miles 3 950
Technology, Growth and Competitiveness…
Jan Fagerberg Hardcover R3,641 Discovery Miles 36 410

 

Partners