![]() |
![]() |
Your cart is empty |
||
Showing 1 - 12 of 12 matches in All Departments
Noncompact symmetric and locally symmetric spaces naturally appear in many mathematical theories, including analysis (representation theory, nonabelian harmonic analysis), number theory (automorphic forms), algebraic geometry (modulae) and algebraic topology (cohomology of discrete groups). In most applications, it is necessary to form an appropriate compactification of the space. The literature dealing with such compactifications is vast. The main purpose of this book is to introduce uniform constructions of most of the known compactifications with emphasis on their geometric and topological structures. The book is divided into three parts. Part I studies compactifications of Riemannian symmetric spaces and their arithmetic quotients. Part II is a study of compact smooth manifolds. Part III studies the compactification of locally symmetric spaces. Familiarity with the theory of semisimple Lie groups is assumed, as is familiarity with algebraic groups defined over the rational numbers in later parts of the book, although most of the pertinent material is recalled as presented. and research mathematicians interested in the applications of Lie theory and representation theory to diverse fields of mathematics.
This book provides an introduction to some aspects of the analytic theory of automorphic forms on G=SL2(R) or the upper-half plane X, with respect to a discrete subgroup ^D*G of G of finite covolume. The point of view is inspired by the theory of infinite dimensional unitary representations of G; this is introduced in the last sections, making this connection explicit. The topics treated include the construction of fundamental domains, the notion of automorphic form on ^D*G\G and its relationship with the classical automorphic forms on X, Poincaré series, constant terms, cusp forms, finite dimensionality of the space of automorphic forms of a given type, compactness of certain convolution operators, Eisenstein series, unitary representations of G, and the spectral decomposition of L2(^D*G/G). The main prerequisites are some results in functional analysis (reviewed, with references) and some familiarity with the elementary theory of Lie groups and Lie algebras.
Armand Borel's mathematical work centered on the theory of Lie groups. Because of the increasingly important place of this theory in the whole of mathematics, Borel's work influenced some of the most important developments of contemporary mathematics. His first great achievement was to apply to Lie groups and homogenous spaces the powerful techniques of algebraic topology developed by Leray, Cartan and Steenrod. In 1992, Borel was awarded the International Balzan Prize for Mathematics "for his fundamental contributions to the theory of Lie groups, algebraic groups and arithmetic groups and for his indefatigable action in favor of high quality in mathematical research and of the propagation of new ideas." He wrote more than 145 articles before 1982, which were collected in three volumes published in 1983. A fourth volume of subsequent articles was published in 2001. Volume III collects the papers written from 1969 to 1982.
Armand Borel's mathematical work centered on the theory of Lie groups. Because of the increasingly important place of this theory in the whole of mathematics, Borel's work influenced some of the most important developments of contemporary mathematics. His first great achievement was to apply to Lie groups and homogenous spaces the powerful techniques of algebraic topology developed by Leray, Cartan and Steenrod. In 1992, Borel was awarded the International Balzan Prize for Mathematics "for his fundamental contributions to the theory of Lie groups, algebraic groups and arithmetic groups, and for his indefatigable action in favor of high quality in mathematical research and of the propagation of new ideas." He wrote more than 145 articles before 1982, which were collected in three volumes published in 1983. A fourth volume of subsequent articles was published in 2001. Volume II collects the papers written from 1959 to 1968.
This revised, enlarged edition of Linear Algebraic Groups (1969) starts by presenting foundational material on algebraic groups, Lie algebras, transformation spaces, and quotient spaces. It then turns to solvable groups, general properties of linear algebraic groups, and Chevally's structure theory of reductive groups over algebraically closed groundfields. It closes with a focus on rationality questions over non-algebraically closed fields.
This book is a publication in Swiss Seminars, a subseries of Progress in Mathematics. It is an expanded version of the notes from a seminar on intersection cohomology theory, which met at the University of Bern, Switzerland, in the spring of 1983. This volume supplies an introduction to the piecewise linear and sheaf-theoretic versions of that theory as developed by M. Goresky and R. MacPherson in Topology 19 (1980), and in Inventiones Mathematicae 72 (1983). While some familiarity with algebraic topology and sheaf theory is assumed, the notes include a self-contained account of further material on constructibility, derived categories, Verdier duality, biduality, and on stratified spaces, which is used in the second paper but not found in standard texts. The volume should be useful to someone interested in acquiring some basic knowledge about the field... a Mathematical Reviews
This book collects the papers published by A. Borel from 1983 to 1999. About half of them are research papers, written on his own or in collaboration, on various topics pertaining mainly to algebraic or Lie groups, homogeneous spaces, arithmetic groups (L2-spectrum, automorphic forms, cohomology and covolumes), L2-cohomology of symmetric or locally symmetric spaces, and to the Oppenheim conjecture. Other publications include surveys and personal recollections (of D. Montgomery, Harish-Chandra, and A. Weil), considerations on mathematics in general and several articles of a historical nature: on the School of Mathematics at the Institute for Advanced Study, on N. Bourbaki and on selected aspects of the works of H. Weyl, C. Chevalley, E. Kolchin, J. Leray, and A. Weil. The book concludes with an essay on H. Poincare and special relativity. Some comments on, and corrections to, a number of papers have also been added.
This book provides an introduction to some aspects of the analytic theory of automorphic forms on G=SL2(R) or the upper-half plane X, with respect to a discrete subgroup G of G of finite covolume. The point of view is inspired by the theory of infinite dimensional unitary representations of G; this is introduced in the last sections, making this connection explicit. The topics treated include the construction of fundamental domains, the notion of automorphic form on G\G and its relationship with the classical automorphic forms on X, Poincare series, constant terms, cusp forms, finite dimensionality of the space of automorphic forms of a given type, compactness of certain convolution operators, Eisenstein series, unitary representations of G, and the spectral decomposition of L2 (G\G). The main prerequisites are some results in functional analysis (reviewed, with references) and some familiarity with the elementary theory of Lie groups and Lie algebras. Graduate students and researchers in analytic number theory will find much to interest them in this book.
The description for this book, Seminar on Transformation Groups. (AM-46), will be forthcoming.
|
![]() ![]() You may like...
Ghosts of Bristol: - Haunting Tales from…
V. N. Bud Phillips
Paperback
The Bloomsbury Handbook of Radio
Kathryn McDonald, Hugh Chignell
Hardcover
R4,919
Discovery Miles 49 190
|