Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Electroencephalography and magnetoencephalography are the two most efficient techniques to study the functional brain. This book completely aswers the fundamental mathematical question of uniqueness of the representations obtained using these techniques, and also covers many other concrete results for special geometric models of the brain, presenting the research of the authors and their groups in the last two decades.
The study of complex variables is beautiful from a purely mathematical point of view, and very useful for solving a wide array of problems arising in applications. This introduction to complex variables, suitable as a text for a one-semester course, has been written for undergraduate students in applied mathematics, science, and engineering. Based on the authors' extensive teaching experience, it covers topics of keen interest to these students, including ordinary differential equations, as well as Fourier and Laplace transform methods for solving partial differential equations arising in physical applications. Many worked examples, applications, and exercises are included. With this foundation, students can progress beyond the standard course and explore a range of additional topics, including generalized Cauchy theorem, Painleve equations, computational methods, and conformal mapping with circular arcs. Advanced topics are labeled with an asterisk and can be included in the syllabus or form the basis for challenging student projects.
Complex variables offer very efficient methods for attacking many difficult problems, and it is the aim of this book to offer a thorough review of these methods and their applications. Part I is an introduction to the subject, including residue calculus and transform methods. Part II advances to conformal mappings, and the study of Riemann-Hilbert problems. An extensive array of examples and exercises are included. This new edition has been improved throughout and is ideal for use in introductory undergraduate and graduate level courses in complex variables. First Edition Hb (1997): 0-521-48058-2 First Edition Pb (1997): 0-521-48523-1
The study of complex variables is beautiful from a purely mathematical point of view, and very useful for solving a wide array of problems arising in applications. This introduction to complex variables, suitable as a text for a one-semester course, has been written for undergraduate students in applied mathematics, science, and engineering. Based on the authors' extensive teaching experience, it covers topics of keen interest to these students, including ordinary differential equations, as well as Fourier and Laplace transform methods for solving partial differential equations arising in physical applications. Many worked examples, applications, and exercises are included. With this foundation, students can progress beyond the standard course and explore a range of additional topics, including generalized Cauchy theorem, Painleve equations, computational methods, and conformal mapping with circular arcs. Advanced topics are labeled with an asterisk and can be included in the syllabus or form the basis for challenging student projects.
|
You may like...
|