0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Learning from Imbalanced Data Sets (Hardcover, 1st ed. 2018): Alberto Fernandez, Salvador Garcia, Mikel Galar, Ronaldo C.... Learning from Imbalanced Data Sets (Hardcover, 1st ed. 2018)
Alberto Fernandez, Salvador Garcia, Mikel Galar, Ronaldo C. Prati, Bartosz Krawczyk, …
R4,006 Discovery Miles 40 060 Ships in 10 - 15 working days

This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way. This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches. Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided. This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions.

Learning from Imbalanced Data Sets (Paperback, Softcover reprint of the original 1st ed. 2018): Alberto Fernandez, Salvador... Learning from Imbalanced Data Sets (Paperback, Softcover reprint of the original 1st ed. 2018)
Alberto Fernandez, Salvador Garcia, Mikel Galar, Ronaldo C. Prati, Bartosz Krawczyk, …
R4,039 Discovery Miles 40 390 Ships in 18 - 22 working days

This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way. This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches. Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided. This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Life of Sir Edward Coke - Lord Chief…
Cuthbert William Johnson Paperback R571 Discovery Miles 5 710
Tokyo Ever After
Emiko Jean Paperback R248 R230 Discovery Miles 2 300
Letters Illustrative of the Reign of…
James Vernon Paperback R639 Discovery Miles 6 390
Atopic Dermatitis, An Issue of…
Jonathan I Silverberg, Nanette Silverberg Hardcover R2,133 Discovery Miles 21 330
Democracy and Power - The Delhi Lectures…
Noam Chomsky, Jean Dreze Hardcover R1,046 Discovery Miles 10 460
Update in Dermatopathology, An Issue of…
Tammie Ferringer Hardcover R1,697 Discovery Miles 16 970
Industrial Design Engineering
Gary Baker Hardcover R2,093 Discovery Miles 20 930
Black Adam An Origin Story
Matthew K. Manning Paperback R230 R216 Discovery Miles 2 160
Euro Crash - The Exit Route from…
B. Brown Hardcover R2,637 Discovery Miles 26 370
Sneaky Snake Mysteries - The Nest…
Gerald Pahl Hardcover R589 Discovery Miles 5 890

 

Partners