Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
The 13 chapters of this book centre around the proof of Theorem 1 of Faltings' paper "Diophantine approximation on abelian varieties," Ann. Math.133 (1991) and together give an approach to the proof that is accessible to Ph.D-level students in number theory and algebraic geometry. Each chapter is based on an instructional lecture given by its author ata special conference for graduate students, on the topic of Faltings' paper.
The notes in this volume correspond to advanced courses held at the Centre de Recerca Matematica as part of the research program in Arithmetic Geometry in the 2009-2010 academic year. The notes by Laurent Berger provide an introduction to "p"-adic Galois representations and Fontaine rings, which are especially useful for describing many local deformation rings at "p" that arise naturally in Galois deformation theory. The notes by Gebhard Bockle offer a comprehensive course on Galois deformation theory, starting from the foundational results of Mazur and discussing in detail the theory of pseudo-representations and their deformations, local deformations at places l p and local deformations at "p" which are flat. In the last section, the results of Bockle and Kisin on presentations of global deformation rings over local ones are discussed. The notes by Mladen Dimitrov present the basics of the arithmetic theory of Hilbert modular forms and varieties, with an emphasis on the study of the images of the attached Galois representations, on modularity lifting theorems over totally real number fields, and on the cohomology of Hilbert modular varieties with integral coefficients. The notes by Lassina Dembele and John Voight describe methods for performing explicit computations in spaces of Hilbert modular forms. These methods depend on the Jacquet-Langlands correspondence and on computations in spaces of quaternionic modular forms, both for the case of definite and indefinite quaternion algebras. Several examples are given, and applications to modularity of Galois representations are discussed. The notes by Tim Dokchitser describe the proof, obtained by the author in a joint project with Vladimir Dokchitser, of the parity conjecture for elliptic curves over number fields under the assumption of finiteness of the Tate-Shafarevich group. The statement of the Birch and Swinnerton-Dyer conjecture is included, as well as a detailed study of local and global root numbers of elliptic curves and their classification."
Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the inspiration for Langlands' conjectures and play an important role in the description of the cohomology of varieties defined over number fields. This collection of up-to-date articles originated from the conference 'Modular Forms' held on the Island of Schiermonnikoog in the Netherlands. A broad range of topics is covered including Hilbert and Siegel modular forms, Weil representations, Tannakian categories and Torelli's theorem. This book is a good source for all researchers and graduate students working on modular forms or related areas of number theory and algebraic geometry.
Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.
|
You may like...
The Jungle Book 2 (Disney)
Haley Joel Osment, John Goodman, …
Blu-ray disc
(1)
R91 Discovery Miles 910
Surfacing - On Being Black And Feminist…
Desiree Lewis, Gabeba Baderoon
Paperback
|