![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
This edited book reports on recent developments in the theory of evolutionary computation, or more generally the domain of randomized search heuristics. It starts with two chapters on mathematical methods that are often used in the analysis of randomized search heuristics, followed by three chapters on how to measure the complexity of a search heuristic: black-box complexity, a counterpart of classical complexity theory in black-box optimization; parameterized complexity, aimed at a more fine-grained view of the difficulty of problems; and the fixed-budget perspective, which answers the question of how good a solution will be after investing a certain computational budget. The book then describes theoretical results on three important questions in evolutionary computation: how to profit from changing the parameters during the run of an algorithm; how evolutionary algorithms cope with dynamically changing or stochastic environments; and how population diversity influences performance. Finally, the book looks at three algorithm classes that have only recently become the focus of theoretical work: estimation-of-distribution algorithms; artificial immune systems; and genetic programming. Throughout the book the contributing authors try to develop an understanding for how these methods work, and why they are so successful in many applications. The book will be useful for students and researchers in theoretical computer science and evolutionary computing.
Randomized search heuristics such as evolutionary algorithms, genetic algorithms, evolution strategies, ant colony and particle swarm optimization turn out to be highly successful for optimization in practice. The theory of randomized search heuristics, which has been growing rapidly in the last five years, also attempts to explain the success of the methods in practical applications.This book covers both classical results and the most recent theoretical developments in the field of randomized search heuristics such as runtime analysis, drift analysis and convergence. Each chapter provides an overview of a particular domain and gives insights into the proofs and proof techniques of more specialized areas. Open problems still remain widely in randomized search heuristics - being a relatively young and vast field. These problems and directions for future research are addressed and discussed in this book.The book will be an essential source of reference for experts in the domain of randomized search heuristics and also for researchers who are involved or ready to embark in this field. As an advanced textbook, graduate students will benefit from the comprehensive coverage of topics
This edited book reports on recent developments in the theory of evolutionary computation, or more generally the domain of randomized search heuristics. It starts with two chapters on mathematical methods that are often used in the analysis of randomized search heuristics, followed by three chapters on how to measure the complexity of a search heuristic: black-box complexity, a counterpart of classical complexity theory in black-box optimization; parameterized complexity, aimed at a more fine-grained view of the difficulty of problems; and the fixed-budget perspective, which answers the question of how good a solution will be after investing a certain computational budget. The book then describes theoretical results on three important questions in evolutionary computation: how to profit from changing the parameters during the run of an algorithm; how evolutionary algorithms cope with dynamically changing or stochastic environments; and how population diversity influences performance. Finally, the book looks at three algorithm classes that have only recently become the focus of theoretical work: estimation-of-distribution algorithms; artificial immune systems; and genetic programming. Throughout the book the contributing authors try to develop an understanding for how these methods work, and why they are so successful in many applications. The book will be useful for students and researchers in theoretical computer science and evolutionary computing.
|
![]() ![]() You may like...
Game Theory and Partial Differential…
Pablo Blanc, Julio Daniel Rossi
Hardcover
R3,383
Discovery Miles 33 830
Adam Smith's Pluralism - Rationality…
Jack Russell Weinstein
Hardcover
R2,178
Discovery Miles 21 780
Interacting with Broadband Society
Leopoldina Fortunati, Jane Vincent, …
Hardcover
Information Security and Privacy…
Dimitris Gritzalis, Steven Furnell, …
Hardcover
R2,994
Discovery Miles 29 940
Nietzsche's Search for Philosophy - On…
Keith Ansell-Pearson
Hardcover
R3,204
Discovery Miles 32 040
|