![]() |
![]() |
Your cart is empty |
||
Showing 1 - 8 of 8 matches in All Departments
Based on the subjects from the Clay Mathematics Institute/Mathematical Sciences Research Institute Workshop titled 'Recent Progress in Dynamics' in September and October 2004, this volume contains surveys and research articles by leading experts in several areas of dynamical systems that have experienced substantial progress. One of the major surveys is on symplectic geometry, which is closely related to classical mechanics and an exciting addition to modern geometry. The survey on local rigidity of group actions gives a broad and up-to-date account of another flourishing subject. Other papers cover hyperbolic, parabolic, and symbolic dynamics as well as ergodic theory. Students and researchers in dynamical systems, geometry, and related areas will find this book fascinating. The book also includes a fifty-page commented problem list that takes the reader beyond the areas covered by the surveys, to inspire and guide further research.
A large international conference celebrated the 50-year career of Anatole Katok and the body of research across smooth dynamics and ergodic theory that he touched. In this book many leading experts provide an account of the latest developments at the research frontier and together set an agenda for future work, including an explicit problem list. This includes elliptic, parabolic, and hyperbolic smooth dynamics, ergodic theory, smooth ergodic theory, and actions of higher-rank groups. The chapters are written in a readable style and give a broad view of each topic; they blend the most current results with the developments leading up to them, and give a perspective on future work. This book is ideal for graduate students, instructors and researchers across all research areas in dynamical systems and related subjects.
Focussing on the mathematics related to the recent proof of ergodicity of the (Weil-Petersson) geodesic flow on a nonpositively curved space whose points are negatively curved metrics on surfaces, this book provides a broad introduction to an important current area of research. It offers original textbook-level material suitable for introductory or advanced courses as well as deep insights into the state of the art of the field, making it useful as a reference and for self-study. The first chapters introduce hyperbolic dynamics, ergodic theory and geodesic and horocycle flows, and include an English translation of Hadamard's original proof of the Stable-Manifold Theorem. An outline of the strategy, motivation and context behind the ergodicity proof is followed by a careful exposition of it (using the Hopf argument) and of the pertinent context of Teichmuller theory. Finally, some complementary lectures describe the deep connections between geodesic flows in negative curvature and Diophantine approximation.
This book provides the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbits structure. The third and fourth parts develop in depth the theories of low-dimensional dynamical systems and hyperbolic dynamical systems. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up. Scientists and engineers working in applied dynamics, nonlinear science, and chaos will also find many fresh insights in this concrete and clear presentation. It contains more than four hundred systematic exercises.
Based on the subjects from the Clay Mathematics Institute/Mathematical Sciences Research Institute Workshop titled 'Recent Progress in Dynamics' in September and October 2004, this volume contains surveys and research articles by leading experts in several areas of dynamical systems that have experienced substantial progress. One of the major surveys is on symplectic geometry, which is closely related to classical mechanics and an exciting addition to modern geometry. The survey on local rigidity of group actions gives a broad and up-to-date account of another flourishing subject. Other papers cover hyperbolic, parabolic, and symbolic dynamics as well as ergodic theory. Students and researchers in dynamical systems, geometry, and related areas will find this book fascinating. The book also includes a fifty-page commented problem list that takes the reader beyond the areas covered by the surveys, to inspire and guide further research.
This volume presents a wide cross section of current research in the theory of dynamical systems and contains articles by leading researchers, including several Fields medalists, in a variety of specialties. These are surveys, usually with new results included, as well as research papers that are included because of their potentially high impact. Major areas covered include hyperbolic dynamics, elliptic dynamics, mechanics, geometry, ergodic theory, group actions, rigidity, applications. The target audience includes dynamicists, who will find new results in their own specialty as well as surveys in others, and mathematicians from other disciplines who look for a sample of current developments in ergodic theory and dynamical systems.
The theory of dynamical systems has given rise to the vast new area variously called applied dynamics, nonlinear science, or chaos theory. This introductory text covers the central topological and probabilistic notions in dynamics ranging from Newtonian mechanics to coding theory. The only prerequisite is a basic undergraduate analysis course. The authors use a progression of examples to present the concepts and tools for describing asymptotic behavior in dynamical systems, gradually increasing the level of complexity. Subjects include contractions, logistic maps, equidistribution, symbolic dynamics, mechanics, hyperbolic dynamics, strange attractors, twist maps, and KAM-theory.
This book provides a self-contained comprehensive exposition of the theory of dynamical systems. The book begins with a discussion of several elementary but crucial examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate and up.
|
![]() ![]() You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|