![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
Felix Klein, a great geometer of the nineteenth century, rediscovered an idea from Hindu mythology in mathematics: the heaven of Indra in which the whole Universe was mirrored in each pearl in a net of pearls. Practically impossible to represent by hand, this idea barely existed outside the imagination, until the 1980s when the authors embarked on the first computer investigation of Klein's vision. In this extraordinary book they explore the path from some basic mathematical ideas to the simple algorithms that create delicate fractal filigrees, most appearing in print for the first time. Step-by-step instructions for writing computer programs allow beginners to generate the images.
This volume is based on lectures given at the highly successful three-week Summer School on Geometry, Topology and Dynamics of Character Varieties held at the National University of Singapore's Institute for Mathematical Sciences in July 2010.Aimed at graduate students in the early stages of research, the edited and refereed articles comprise an excellent introduction to the subject of the program, much of which is otherwise available only in specialized texts. Topics include hyperbolic structures on surfaces and their degenerations, applications of ping-pong lemmas in various contexts, introductions to Lorenzian and complex hyperbolic geometry, and representation varieties of surface groups into PSL(2, ) and other semi-simple Lie groups. This volume will serve as a useful portal to students and researchers in a vibrant and multi-faceted area of mathematics.
Felix Klein, one of the great nineteenth-century geometers, discovered in mathematics an idea prefigured in Buddhist mythology: the heaven of Indra contained a net of pearls, each of which was reflected in its neighbour, so that the whole Universe was mirrored in each pearl. Klein studied infinitely repeated reflections and was led to forms with multiple coexisting symmetries. For a century, these images barely existed outside the imagination of mathematicians. However, in the 1980s, the authors embarked on the first computer exploration of Klein's vision, and in doing so found many further extraordinary images. Join the authors on the path from basic mathematical ideas to the simple algorithms that create the delicate fractal filigrees, most of which have never appeared in print before. Beginners can follow the step-by-step instructions for writing programs that generate the images. Others can see how the images relate to ideas at the forefront of research.
The subject of Kleinian groups and hyperbolic 3-manifolds is currently undergoing explosively fast development, the last few years having seen the resolution of many longstanding conjectures. This volume contains important expositions and original work by some of the main contributors on topics such as topology and geometry of 3-manifolds, curve complexes, classical Ahlfors-Bers theory, computer explorations and projective structures. Researchers in these and related areas will find much of interest here from the explosion in the area over recent years, including important and original research from leading names in the field.
|
![]() ![]() You may like...
Facing up to AIDS - The Socio-Economic…
Sholto Cross, Alan Whiteside
Paperback
R3,017
Discovery Miles 30 170
Age Of The City - Why Our Future Will Be…
Ian Goldin, Tom Lee-Devlin
Paperback
Acoustic and Elastic Wave Fields in…
Alex A. Kaufman, A.L. Levshin
Hardcover
R5,307
Discovery Miles 53 070
|