Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
The theory of optimal transportation has its origins in the eighteenth century when the problem of transporting resources at a minimal cost was first formalised. Through subsequent developments, particularly in recent decades, it has become a powerful modern theory. This book contains the proceedings of the summer school 'Optimal Transportation: Theory and Applications' held at the Fourier Institute in Grenoble. The event brought together mathematicians from pure and applied mathematics, astrophysics, economics and computer science. Part I of this book is devoted to introductory lecture notes accessible to graduate students, while Part II contains research papers. Together, they represent a valuable resource on both fundamental and advanced aspects of optimal transportation, its applications, and its interactions with analysis, geometry, PDE and probability, urban planning and economics. Topics covered include Ricci flow, the Euler equations, functional inequalities, curvature-dimension conditions, and traffic congestion.
At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book's value as a most welcome reference text on this subject.
This volume collects the notes of the CIME course "Nonlinear PDE s and applications" held in Cetraro (Italy) on June 23 28, 2008. It consists of four series of lectures, delivered by Stefano Bianchini (SISSA, Trieste), Eric A. Carlen (Rutgers University), Alexander Mielke (WIAS, Berlin), and Cedric Villani (Ecole Normale Superieure de Lyon). They presented a broad overview of far-reaching findings and exciting new developments concerning, in particular, optimal transport theory, nonlinear evolution equations, functional inequalities, and differential geometry. A sampling of the main topics considered here includes optimal transport, Hamilton-Jacobi equations, Riemannian geometry, and their links with sharp geometric/functional inequalities, variational methods for studying nonlinear evolution equations and their scaling properties, and the metric/energetic theory of gradient flows and of rate-independent evolution problems. The book explores the fundamental connections between all of these topics and points to new research directions in contributions by leading experts in these fields.
Featuring updated versions of two research courses held at the Centre Emile Borel in Paris in 2001, this book describes the mathematical theory of convergence to equilibrium for the Boltzmann equation and its relation to various problems and fields. It also discusses four conjectures for the kinetic behavior of the hard sphere models and formulates four stochastic variations of this model, also reviewing known results for these.
Leading researchers in the field of Optimal Transportation, with different views and perspectives, contribute to this Summer School volume: Monge-Ampère and Monge-Kantorovich theory, shape optimization and mass transportation are linked, among others, to applications in fluid mechanics granular material physics and statistical mechanics, emphasizing the attractiveness of the subject from both a theoretical and applied point of view. The volume is designed to become a guide to researchers willing to enter into this challenging and useful theory.
At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book's value as a most welcome reference text on this subject.
In the words of the great poet Senghor, Cedric Villani makes the bold claim that Mathematics is the Poetry of Science. Perhaps paradoxical to some, both disciplines are concerned with describing the world around us, understanding its parts, and using this knowledge to create something profound. World-renowned mathematician and Fields Medallist Cedric Villani explores this analogy in this engaging and intelligent text, and shows how mathematics, one of the world's few universal languages, holds deep similarities to the literary genre. A great lover of poetry, he insists that the two are intrinsically linked in their aim of both tackling the complexities of our reality as well as distancing us from it so that we may better appreciate its beauty. In a more light-hearted and concise approach than his more theoretical academic works, this book represents one of Villani's attempts to communicate his love of mathematics to a wider audience, drawing daring parallels between two universes that meet in their aspiration of the sublime.
"This man could plainly do for mathematics what Brian Cox has done for physics" - Sunday Times How does a genius see the world? Where and how does inspiration strike? Cedric Villani takes us on a mesmerising adventure as he wrestles with the Boltzmann equation - a new theorem that will eventually win him the most coveted prize in mathematics and a place in the mathematical history books. Along the way he encounters obstacles and setbacks, losses of faith and even brushes with madness. His story is one of courage and partnership, doubt and anxiety, elation and despair. Of ordinary family life blurring with the abstract world of mathematical physics, of theories and equations that haunt your dreams and seeking the elusive inspiration found only in a locked, darkened room. Blending science with history, biography with myth, Villani conjures up an inimitable cast: the omnipresent Einstein, mad genius Kurt Godel, and Villani's personal hero, John Nash. Step inside the magical world of Cedric Villani...
|
You may like...
|