0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Young Measures on Topological Spaces - With Applications in Control Theory and Probability Theory (Hardcover, 2004 ed.):... Young Measures on Topological Spaces - With Applications in Control Theory and Probability Theory (Hardcover, 2004 ed.)
Charles Castaing, Paul Raynaud de Fitte, Michel Valadier
R1,584 Discovery Miles 15 840 Ships in 18 - 22 working days

Classicalexamples of moreand more oscillatingreal-valued functions on a domain N ?of R are the functions u (x)=sin(nx)with x=(x ,...,x ) or the so-called n 1 1 n n+1 Rademacherfunctionson]0,1[,u (x)=r (x) = sgn(sin(2 ?x))(seelater3.1.4). n n They may appear as the gradients?v of minimizing sequences (v ) in some n n n?N variationalproblems. Intheseexamples,thefunctionu convergesinsomesenseto n ameasure on ? xR, called Young measure. In Functional Analysis formulation, this is the narrow convergence to of the image of the Lebesgue measure on ? by ? ? (?,u (?)). In the disintegrated form ( ) ,the parametrized measure n ? ??? ? captures the possible scattering of the u around ?. n Curiously if (X ) is a sequence of random variables deriving from indep- n n?N dent ones, the n-th one may appear more and more far from the k ?rst ones as 2 if it was oscillating (think of orthonormal vectors in L which converge weakly to 0). More precisely when the laws L(X ) narrowly converge to some probability n measure , it often happens that for any k and any A in the algebra generated by X ,...,X , the conditional law L(X|A) still converges to (see Chapter 9) 1 k n which means 1 ??? C (R) ?(X (?))dP(?)?? ?d b n P(A) A R or equivalently, ? denoting the image of P by ? ? (?,X (?)), n X n (1l ??)d? ?? (1l ??)d[P? ].

Advances in Mathematical Economics (Hardcover, 2001 ed.): Charles Castaing Advances in Mathematical Economics (Hardcover, 2001 ed.)
Charles Castaing
R2,721 Discovery Miles 27 210 Ships in 18 - 22 working days

A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers. Members of the editorial board of this series consists of following prominent economists and mathematicians: Managing Editors: S. Kusuoka (Univ. Tokyo), T. Maruyama (Keio Univ.) Editors: R. Anderson (U.C.Berkeley), C. Castaing (Univ. Montpellier), F. H. Clarke (Univ. Lyon I), G. Debreu (U.C. Berkeleyer), E. Dierker (Univ. Vienna), D. Duffie (Stanford Univ.), L.C. Evans (U.C. Berkeley), T. Fujimoto (Okayama Univ.), J. -M. Grandmont (CREST-CNRS), N. Hirano (Yokohama National Univ.), L. Hurwicz (Univ. of Minnesota), T. Ichiishi (Ohio State Univ.), A. Ioffe (Israel Institute of Technology), S. Iwamoto (Kyushu Univ.), K. Kamiya (Univ. Tokyo), K. Kawamata (Keio Univ.), N. Kikuchi (Keio Univ.), H. Matano (Univ. Tokyo), K. Nishimura (Kyoto Univ.), M. K. Richter (Univ. Minnesota), Y. Takahashi (Kyoto Univ.), M. Valadier (Univ. Montpellier II), M. Yano (Keio Univ).

Advances in Mathematical Economics (Paperback, Softcover reprint of the original 1st ed. 2001): Charles Castaing Advances in Mathematical Economics (Paperback, Softcover reprint of the original 1st ed. 2001)
Charles Castaing
R2,610 Discovery Miles 26 100 Ships in 18 - 22 working days

A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers. Members of the editorial board of this series consists of following prominent economists and mathematicians: Managing Editors: S. Kusuoka (Univ. Tokyo), T. Maruyama (Keio Univ.) Editors: R. Anderson (U.C.Berkeley), C. Castaing (Univ. Montpellier), F. H. Clarke (Univ. Lyon I), G. Debreu (U.C. Berkeleyer), E. Dierker (Univ. Vienna), D. Duffie (Stanford Univ.), L.C. Evans (U.C. Berkeley), T. Fujimoto (Okayama Univ.), J. -M. Grandmont (CREST-CNRS), N. Hirano (Yokohama National Univ.), L. Hurwicz (Univ. of Minnesota), T. Ichiishi (Ohio State Univ.), A. Ioffe (Israel Institute of Technology), S. Iwamoto (Kyushu Univ.), K. Kamiya (Univ. Tokyo), K. Kawamata (Keio Univ.), N. Kikuchi (Keio Univ.), H. Matano (Univ. Tokyo), K. Nishimura (Kyoto Univ.), M. K. Richter (Univ. Minnesota), Y. Takahashi (Kyoto Univ.), M. Valadier (Univ. Montpellier II), M. Yano (Keio Univ).

Young Measures on Topological Spaces - With Applications in Control Theory and Probability Theory (Paperback, Softcover reprint... Young Measures on Topological Spaces - With Applications in Control Theory and Probability Theory (Paperback, Softcover reprint of the original 1st ed. 2004)
Charles Castaing, Paul Raynaud de Fitte, Michel Valadier
R1,419 Discovery Miles 14 190 Ships in 18 - 22 working days

Classicalexamples of moreand more oscillatingreal-valued functions on a domain N ?of R are the functions u (x)=sin(nx)with x=(x ,...,x ) or the so-called n 1 1 n n+1 Rademacherfunctionson]0,1[,u (x)=r (x) = sgn(sin(2 ?x))(seelater3.1.4). n n They may appear as the gradients?v of minimizing sequences (v ) in some n n n?N variationalproblems. Intheseexamples,thefunctionu convergesinsomesenseto n ameasure on ? xR, called Young measure. In Functional Analysis formulation, this is the narrow convergence to of the image of the Lebesgue measure on ? by ? ? (?,u (?)). In the disintegrated form ( ) ,the parametrized measure n ? ??? ? captures the possible scattering of the u around ?. n Curiously if (X ) is a sequence of random variables deriving from indep- n n?N dent ones, the n-th one may appear more and more far from the k ?rst ones as 2 if it was oscillating (think of orthonormal vectors in L which converge weakly to 0). More precisely when the laws L(X ) narrowly converge to some probability n measure , it often happens that for any k and any A in the algebra generated by X ,...,X , the conditional law L(X|A) still converges to (see Chapter 9) 1 k n which means 1 ??? C (R) ?(X (?))dP(?)?? ?d b n P(A) A R or equivalently, ? denoting the image of P by ? ? (?,X (?)), n X n (1l ??)d? ?? (1l ??)d[P? ].

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Ultra Link UL-TMT2160 Flat TV Mount Wall…
R199 R167 Discovery Miles 1 670
Pet Mall Dog Chew Toy Tyre BPA-Free…
Linx Ross Mid Back Typist Chair (Black)
 (3)
R1,249 R1,135 Discovery Miles 11 350
Loot
Nadine Gordimer Paperback  (2)
R367 R340 Discovery Miles 3 400
Loot
Nadine Gordimer Paperback  (2)
R367 R340 Discovery Miles 3 400
Sony PlayStation 5 DualSense Wireless…
R1,691 Discovery Miles 16 910
The Legend Of Zola Mahobe - And The…
Don Lepati, Nikolaos Kirkinis Paperback  (1)
R382 Discovery Miles 3 820
Sunbeam Steam and Spray Iron
R299 R149 Discovery Miles 1 490
Lifespace Quality Silicone Black Sheath…
R159 R79 Discovery Miles 790
Titanic - 4K Ultra HD + Blu-Ray
Leonardo DiCaprio, Kate Winslet Blu-ray disc R622 Discovery Miles 6 220

 

Partners