![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
In modern computing a program is usually distributed among several processes. The fundamental challenge when developing reliable and secure distributed programs is to support the cooperation of processes required to execute a common task, even when some of these processes fail. Failures may range from crashes to adversarial attacks by malicious processes. Cachin, Guerraoui, and Rodrigues present an introductory description of fundamental distributed programming abstractions together with algorithms to implement them in distributed systems, where processes are subject to crashes and malicious attacks. The authors follow an incremental approach by first introducing basic abstractions in simple distributed environments, before moving to more sophisticated abstractions and more challenging environments. Each core chapter is devoted to one topic, covering reliable broadcast, shared memory, consensus, and extensions of consensus. For every topic, many exercises and their solutions enhance the understanding This book represents the second edition of "Introduction to Reliable Distributed Programming". Its scope has been extended to include security against malicious actions by non-cooperating processes. This important domain has become widely known under the name "Byzantine fault-tolerance".
This book constitutes the refereed proceedings of the 34th International Colloquium on Automata, Languages and Programming, ICALP 2007, held in Wroclaw, Poland in July 2007. The 76 revised full papers presented together with 4 invited lectures were carefully reviewed and selected from 242 submissions. The papers are grouped in three major tracks on algorithms, automata, complexity and games, on logic, semantics, and theory of programming, and on security and cryptography foundations.
These are the proceedings of Eurocrypt 2004, the 23rd Annual Eurocrypt C- ference. The conference was organized by members of the IBM Zurich Research Laboratory in cooperation with IACR, the International Association for Cr- tologic Research. Theconferencereceivedarecordnumberof206submissions,outofwhichthe program committee selected 36 for presentation at the conference (three papers were withdrawn by the authors shortly after submission). These proceedings contain revised versions of the accepted papers. These revisions have not been checked for correctness, and the authors bear full responsibility for the contents of their papers. The conference program also featured two invited talks. The ?rst one was the 2004 IACR Distinguished Lecture given by Whit?eld Di?e. The second invited talk was by Ivan Damg? ard who presented "Paradigms for Multiparty Computation. " The traditional rump session with short informal talks on recent results was chaired by Arjen Lenstra. The reviewing process was a challenging task, and many good submissions had to be rejected. Each paper was reviewed independently by at least three members of the program committee, and papers co-authored by a member of the program committee were reviewed by at least six (other) members. The individual reviewing phase was followed by profound and sometimes lively d- cussions about the papers, which contributed a lot to the quality of the ?nal selection. Extensive comments were sent to the authors in most cases.
In modern computing a program is usually distributed among several processes. The fundamental challenge when developing reliable and secure distributed programs is to support the cooperation of processes required to execute a common task, even when some of these processes fail. Failures may range from crashes to adversarial attacks by malicious processes. Cachin, Guerraoui, and Rodrigues present an introductory description of fundamental distributed programming abstractions together with algorithms to implement them in distributed systems, where processes are subject to crashes and malicious attacks. The authors follow an incremental approach by first introducing basic abstractions in simple distributed environments, before moving to more sophisticated abstractions and more challenging environments. Each core chapter is devoted to one topic, covering reliable broadcast, shared memory, consensus, and extensions of consensus. For every topic, many exercises and their solutions enhance the understanding This book represents the second edition of "Introduction to Reliable Distributed Programming". Its scope has been extended to include security against malicious actions by non-cooperating processes. This important domain has become widely known under the name "Byzantine fault-tolerance".
|
![]() ![]() You may like...
|