Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
The algebraic theory of automata was created by Schutzenberger and Chomsky over 50 years ago and there has since been a great deal of development. Classical work on the theory to noncommutative power series has been augmented more recently to areas such as representation theory, combinatorial mathematics and theoretical computer science. This book presents to an audience of graduate students and researchers a modern account of the subject and its applications. The algebraic approach allows the theory to be developed in a general form of wide applicability. For example, number-theoretic results can now be more fully explored, in addition to applications in automata theory, codes and non-commutative algebra. Much material, for example, Schutzenberger's theorem on polynomially bounded rational series, appears here for the first time in book form. This is an excellent resource and reference for all those working in algebra, theoretical computer science and their areas of overlap.
This book constitutes the refereed proceedings of the 15th IAPR International Conference on Discrete Geometry for Computer Imagery, DGCI 2009, held in Montreal, Canada, in September/October 2009. The 42 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on discrete shape, representation, recognition and analysis; discrete and combinatorial tools for image segmentation and analysis; discrete and combinatorial Topology; models for discrete geometry; geometric transforms; and discrete tomography.
In 1875, Elwin Bruno Christoffel introduced a special class of words on a binary alphabet linked to continued fractions which would go onto be known as Christoffel words. Some years later, Andrey Markoff published his famous theory, the now called Markoff theory. It characterized certain quadratic forms and certain real numbers by extremal inequalities. Both classes are constructed using certain natural numbers - known as Markoff numbers - and they are characterized by a certain Diophantine equality. More basically, they are constructed using certain words - essentially the Christoffel words. The link between Christoffel words and the theory of Markoff was noted by Ferdinand Frobenius in 1913, but has been neglected in recent times. Motivated by this overlooked connection, this book looks to expand on the relationship between these two areas. Part 1 focuses on the classical theory of Markoff, while Part II explores the more advanced and recent results of the theory of Christoffel words.
This much-needed new book is the first to specifically detail free Lie algebras. Lie polynomials appeared at the turn of the century and were identified with the free Lie algebra by Magnus and Witt some thirty years later. Many recent, important developments have occurred in the field--especially from the point of view of representation theory--that have necessitated a thorough treatment of the subject. This timely book covers all aspects of the field, including characterization of Lie polynomials and Lie series, subalgebras and automorphisms, canonical projections, Hall bases, shuffles and subwords, circular words, Lie representations of the symmetric group, related symmetric functions, descent algebra, and quasisymmetric functions. With its emphasis on the algebraic and combinatorial point of view as well as representation theory, this book will be welcomed by students and researchers in mathematics and theoretical computer science.
This book constitutes the refereed proceedings of the 11th International Conference on Combinatorics on Words, WORDS 2017, held in Montreal, QC, Canada, in September 2017. The 21 revised full papers presented together with 5invoted talks were carefully reviewed and selected from 26 submissions. Discrete geometry plays an expanding role in the fields of shape modeling, image synthesis, and image analysis. It deals with topological and geometrical definitions of digitized objects or digitized images and provides both a theoretical and computational framework for computer imaging.
This book constitutes the proceedings of the 20th International Conference on Developments in Language Theory, DLT 2016, held in Montreal, QC, Canada, in July 2016. The 32 full papers and 4 abstracts of invited papers presented were carefully reviewed and selected from 48 submissions. This volume presents current developments in formal languages and automata, especially from the following topics and areas: combinatorial and algebraic properties of words and languages; grammars, acceptors and transducers for strings, trees, graphs, arrays; algebraic theories for automata and languages; codes; efficient text algorithms; symbolic dynamics; decision problems; relationships to complexity theory and logic; picture description and analysis; polyominoes and bidimentional patterns; cryptography; concurrency; cellular automata; bio-inspried computing; quantum computing.
This major revision of Berstel and Perrin's classic Theory of Codes has been rewritten with a more modern focus and a much broader coverage of the subject. The concept of unambiguous automata, which is intimately linked with that of codes, now plays a significant role throughout the book, reflecting developments of the last 20 years. This is complemented by a discussion of the connection between codes and automata, and new material from the field of symbolic dynamics. The authors have also explored links with more practical applications, including data compression and cryptography. The treatment remains self-contained: there is background material on discrete mathematics, algebra and theoretical computer science. The wealth of exercises and examples make it ideal for self-study or courses. In summary, this is a comprehensive reference on the theory of variable-length codes and their relation to automata.
|
You may like...
|