Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
Power Generation Technologies for Low-Temperature and Distributed Heat presents a systematic and detailed analysis of a wide range of power generation systems for low-temperature (lower than 700-800 DegreesC) and distributed heat recovery applications. Each technology presented is reviewed by a well-known specialist to provide the reader with an accurate, insightful and up-to-date understanding of the latest research and knowledge in the field. Technologies are introduced before the fundamental concepts and theoretical technical and economic aspects are discussed, as well as the practical performance expectations. Cutting-edge technical progress, key applications, markets, as well as emerging and future trends are also provided, presenting a multifaceted and complete view of the most suitable technologies. A chapter on various options for thermal and electrical energy storage is also included with practical examples, making this a valuable resource for engineers, researchers, policymakers and engineering students in the fields of thermal energy, distributed power generation systems and renewable and clean energy technology systems.
In this work gaseous fuels were released continuously and concentrically into confined annular co-flows of turbulent hot air. Following injection the fuel and air mixed and at some length downstream of the nozzle the reactive mixture autoignited. Original phenomena are reported of autoignition spots, unsteady flame propagation and extinction or flashback. The frequency of the spots was measured, as were their acoustic and chemiluminescence characteristics. Optical measurements of the autoignition locations were made and used to estimate mean delay times from injection. As would be expected by considerations of simple chemical kinetics and the mean concentration field, higher air temperatures and lower fuel velocities resulted in autoignition closer to the injector. However, as the air velocity and hence also turbulent fluctuations were increased, autoignition shifted downstream and was delayed, while its frequency and sound intensity decreased. Such and other situations are presented that cannot be explained purely in terms of chemical arguments, i.e. homogeneous delay times, highlighting the significance of the mixing field through the mixture fraction and scalar dissipation rate.
|
You may like...
|