![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
A polynomial identity for an algebra (or a ring) $A$ is a polynomial in noncommutative variables that vanishes under any evaluation in $A$. An algebra satisfying a nontrivial polynomial identity is called a PI algebra, and this is the main object of study in this book, which can be used by graduate students and researchers alike. The book is divided into four parts. Part 1 contains foundational material on representation theory and noncommutative algebra. In addition to setting the stage for the rest of the book, this part can be used for an introductory course in noncommutative algebra. An expert reader may use Part 1 as reference and start with the main topics in the remaining parts. Part 2 discusses the combinatorial aspects of the theory, the growth theorem, and Shirshov's bases. Here methods of representation theory of the symmetric group play a major role. Part 3 contains the main body of structure theorems for PI algebras, theorems of Kaplansky and Posner, the theory of central polynomials, M. Artin's theorem on Azumaya algebras, and the geometric part on the variety of semisimple representations, including the foundations of the theory of Cayley-Hamilton algebras. Part 4 is devoted first to the proof of the theorem of Razmyslov, Kemer, and Braun on the nilpotency of the nil radical for finitely generated PI algebras over Noetherian rings, then to the theory of Kemer and the Specht problem. Finally, the authors discuss PI exponent and codimension growth. This part uses some nontrivial analytic tools coming from probability theory. The appendix presents the counterexamples of Golod and Shafarevich to the Burnside problem.
Topics in Hyperplane Arrangements, Polytopes and Box-Splines brings together many areas of mathematics that focus on methods to compute the number of integral points in suitable families or variable polytopes. The topics introduced expand upon differential and difference equations, approximation theory, cohomology, and module theory. The discussion is divided into five extensive parts; the first of which provides basic material on convex sets, combinatorics, polytopes, Laplace and Fourier transforms, and the language of modules over the Weyl algebra. The following four sections focus on the differentiable case, discrete case, and several applications, e.i., two independent chapters explore the computations of De Rham cohomology for the complement of a hyperplane or toric arrangement. This book, written by two distinguished authors, engages a broad audience by providing a strong foundation in very important areas. This book may be used in a classroom setting as well as a reference for researchers.
Lie groups, named for the 19th century mathematician Sophus Lie, has been an increasing area of focus and rich research since the middle of the 20th century. Procesi's masterful approach to Lie groups through invariants and representations gives the reader a comprehensive treatment of the classical groups along with an extensive introduction to a wide range of topics associated with Lie groups: symmetric functions, theory of algebraic forms, Lie algebras, tensor algebra and symmetry, semisimple Lie algebras, algebraic groups, group representations, invariant, Hilbert theory, and binary forms with fields ranging from pure algebra to functional analysis.Key to this unique exposition is the large amount of background material presented so the book is accessible to a reader with relatively modest mathematical background. Historical information, examples, exercises are all woven into the text.Lie Groups: An Approach through Invariants and Representations will engage a broad audience, including advanced undergraduates, graduates, mathematicians in a variety of areas from pure algebra to functional analysis and physics.
This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of $m\times m$ matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book.
|
![]() ![]() You may like...
Fabrication of Graphene from Camphor…
Kashinath Lellala, Govind Gupta, …
Hardcover
R1,664
Discovery Miles 16 640
Metal Matrix Composites - Advances in…
Jayakrishna Kandasamy, Rajyalakshmi G, …
Hardcover
R3,411
Discovery Miles 34 110
|