0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Accelerated Optimization for Machine Learning - First-Order Algorithms (Hardcover, 1st ed. 2020): Zhouchen Lin, Huan Li, Cong... Accelerated Optimization for Machine Learning - First-Order Algorithms (Hardcover, 1st ed. 2020)
Zhouchen Lin, Huan Li, Cong Fang
R4,247 Discovery Miles 42 470 Ships in 12 - 19 working days

This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning. Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well as for graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.

Alternating Direction Method of Multipliers for Machine Learning (Hardcover, 1st ed. 2022): Zhouchen Lin, Huan Li, Cong Fang Alternating Direction Method of Multipliers for Machine Learning (Hardcover, 1st ed. 2022)
Zhouchen Lin, Huan Li, Cong Fang
R3,901 Discovery Miles 39 010 Ships in 12 - 19 working days

Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time.

Accelerated Optimization for Machine Learning - First-Order Algorithms (Paperback, 1st ed. 2020): Zhouchen Lin, Huan Li, Cong... Accelerated Optimization for Machine Learning - First-Order Algorithms (Paperback, 1st ed. 2020)
Zhouchen Lin, Huan Li, Cong Fang
R4,350 Discovery Miles 43 500 Ships in 10 - 15 working days

This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning. Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well as for graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.

Alternating Direction Method of Multipliers for Machine Learning (1st ed. 2022): Zhouchen Lin, Huan Li, Cong Fang Alternating Direction Method of Multipliers for Machine Learning (1st ed. 2022)
Zhouchen Lin, Huan Li, Cong Fang
R4,101 Discovery Miles 41 010 Ships in 10 - 15 working days

Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
How To Draw Monsters - 100 Step By Step…
Puzzle Pals Hardcover R522 R493 Discovery Miles 4 930
Kaleidoscope Ultimate Colouring Carry…
Hinkler Pty Ltd Kit R599 R532 Discovery Miles 5 320
Fantastical Creatures Color by Number…
Marcus Williams Paperback R241 Discovery Miles 2 410
A Crown That Lasts - You Are Not Your…
Demi-Leigh Tebow Paperback R340 R319 Discovery Miles 3 190
The Peoples of Ancient Siberia - An…
Aleksei P Okladnikov Hardcover R3,765 Discovery Miles 37 650
Sunny Vibes Colouring: Cosy & Calm
Paperback R100 R91 Discovery Miles 910
Alphabet Handwriting and Coloring…
Pa Publishing Hardcover R537 Discovery Miles 5 370
The Scioto Hopewell and Their Neighbors…
C.A. Johnston Hardcover R8,929 Discovery Miles 89 290
Dogs in the Athenian Agora
Colin Whiting Paperback R245 Discovery Miles 2 450
Origins of Human Innovation and…
Scott Elias Hardcover R6,151 R4,211 Discovery Miles 42 110

 

Partners