0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Alternating Direction Method of Multipliers for Machine Learning (Hardcover, 1st ed. 2022): Zhouchen Lin, Huan Li, Cong Fang Alternating Direction Method of Multipliers for Machine Learning (Hardcover, 1st ed. 2022)
Zhouchen Lin, Huan Li, Cong Fang
R3,672 Discovery Miles 36 720 Ships in 10 - 15 working days

Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time.

Accelerated Optimization for Machine Learning - First-Order Algorithms (Hardcover, 1st ed. 2020): Zhouchen Lin, Huan Li, Cong... Accelerated Optimization for Machine Learning - First-Order Algorithms (Hardcover, 1st ed. 2020)
Zhouchen Lin, Huan Li, Cong Fang
R3,997 Discovery Miles 39 970 Ships in 10 - 15 working days

This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning. Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well as for graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.

Alternating Direction Method of Multipliers for Machine Learning (1st ed. 2022): Zhouchen Lin, Huan Li, Cong Fang Alternating Direction Method of Multipliers for Machine Learning (1st ed. 2022)
Zhouchen Lin, Huan Li, Cong Fang
R3,783 Discovery Miles 37 830 Ships in 18 - 22 working days

Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time.

Accelerated Optimization for Machine Learning - First-Order Algorithms (Paperback, 1st ed. 2020): Zhouchen Lin, Huan Li, Cong... Accelerated Optimization for Machine Learning - First-Order Algorithms (Paperback, 1st ed. 2020)
Zhouchen Lin, Huan Li, Cong Fang
R4,013 Discovery Miles 40 130 Ships in 18 - 22 working days

This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning. Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well as for graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Re-Enchanting the Earth - Why AI Needs…
Ilia Delio Paperback R578 R527 Discovery Miles 5 270
You Can't Put God in a Box - Thoughtful…
Kelly Besecke Hardcover R3,833 Discovery Miles 38 330
Natural Theology - Or, Evidences of the…
William Paley Paperback R535 Discovery Miles 5 350
The Divine Order, the Human Order, and…
Eric Watkins Hardcover R2,874 Discovery Miles 28 740
Rational Cosmology - Or, the Eternal…
Laurens Perseus Hickok Paperback R573 Discovery Miles 5 730
Animism, the Seed of Religion
Edward Clodd Paperback R377 Discovery Miles 3 770
An Enquiry Concerning Human…
David Hume Hardcover R687 Discovery Miles 6 870
The God Articles
Steven Colborne Paperback R879 Discovery Miles 8 790
Thomas Aquinas on God and Evil
Brian Davies Hardcover R2,757 Discovery Miles 27 570
A Sceptic's Guide to Atheism
Peter S. Williams Paperback R562 Discovery Miles 5 620

 

Partners