![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
Spaces of constant curvature, i.e. Euclidean space, the sphere, and Loba chevskij space, occupy a special place in geometry. They are most accessible to our geometric intuition, making it possible to develop elementary geometry in a way very similar to that used to create the geometry we learned at school. However, since its basic notions can be interpreted in different ways, this geometry can be applied to objects other than the conventional physical space, the original source of our geometric intuition. Euclidean geometry has for a long time been deeply rooted in the human mind. The same is true of spherical geometry, since a sphere can naturally be embedded into a Euclidean space. Lobachevskij geometry, which in the first fifty years after its discovery had been regarded only as a logically feasible by-product appearing in the investigation of the foundations of geometry, has even now, despite the fact that it has found its use in numerous applications, preserved a kind of exotic and even romantic element. This may probably be explained by the permanent cultural and historical impact which the proof of the independence of the Fifth Postulate had on human thought."
Since the early work of Gauss and Riemann, differential geometry has grown into a vast network of ideas and approaches, encompassing local considerations such as differential invariants and jets as well as global ideas, such as Morse theory and characteristic classes. In this volume of the Encyclopaedia, the authors give a tour of the principal areas and methods of modern differential geomerty. The book is structured so that the reader may choose parts of the text to read and still take away a completed picture of some area of differential geometry. Beginning at the introductory level with curves in Euclidian space, the sections become more challenging, arriving finally at the advanced topics which form the greatest part of the book: transformation groups, the geometry of differential equations, geometric structures, the equivalence problem, the geometry of elliptic operators. Several of the topics are approaches which are now enjoying a resurgence, e.g. G-structures and contact geometry. As an overview of the major current methods of differential geometry, EMS 28 is a map of these different ideas which explains the interesting points at every stop. The authors' intention is that the reader should gain a new understanding of geometry from the process of reading this survey.
Spaces of constant curvature, i.e. Euclidean space, the sphere, and Loba chevskij space, occupy a special place in geometry. They are most accessible to our geometric intuition, making it possible to develop elementary geometry in a way very similar to that used to create the geometry we learned at school. However, since its basic notions can be interpreted in different ways, this geometry can be applied to objects other than the conventional physical space, the original source of our geometric intuition. Euclidean geometry has for a long time been deeply rooted in the human mind. The same is true of spherical geometry, since a sphere can naturally be embedded into a Euclidean space. Lobachevskij geometry, which in the first fifty years after its discovery had been regarded only as a logically feasible by-product appearing in the investigation of the foundations of geometry, has even now, despite the fact that it has found its use in numerous applications, preserved a kind of exotic and even romantic element. This may probably be explained by the permanent cultural and historical impact which the proof of the independence of the Fifth Postulate had on human thought."
Since the early work of Gauss and Riemann, differential geometry has grown into a vast network of ideas and approaches, encompassing local considerations such as differential invariants and jets as well as global ideas, such as Morse theory and characteristic classes. In this volume of the Encyclopaedia, the authors give a tour of the principal areas and methods of modern differential geomerty. The book is structured so that the reader may choose parts of the text to read and still take away a completed picture of some area of differential geometry. Beginning at the introductory level with curves in Euclidian space, the sections become more challenging, arriving finally at the advanced topics which form the greatest part of the book: transformation groups, the geometry of differential equations, geometric structures, the equivalence problem, the geometry of elliptic operators. Several of the topics are approaches which are now enjoying a resurgence, e.g. G-structures and contact geometry. As an overview of the major current methods of differential geometry, EMS 28 is a map of these different ideas which explains the interesting points at every stop. The authors' intention is that the reader should gain a new understanding of geometry from the process of reading this survey.
|
![]() ![]() You may like...
I Shouldnt Be Telling You This
Jeff Goldblum, The Mildred Snitzer Orchestra
CD
R61
Discovery Miles 610
|