Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
Now available in a fully revised and updated new edition, this well established textbook affords a clear introduction to the theory of probability. Topics covered include conditional probability, independence, discrete and continuous random variables, generating functions and limit theorems, and an introduction to Markov chains. The text is accessible to undergraduate students and provides numerous examples and exercises to help develop the important skills necessary for problem solving. First edition Hb (1994): 0-521-42028-8 First Edition Pb (1994); 0-521-42183-7
Probability and Random Processes begins with the basic ideas common to most undergraduate courses in mathematics, statistics, and science. It ends with material usually found at graduate level, for example, Markov processes, (including Markov chain Monte Carlo), martingales, queues, diffusions, (including stochastic calculus with Ito's formula), renewals, stationary processes (including the ergodic theorem), and option pricing in mathematical finance using the Black-Scholes formula. Further, in this new revised fourth edition, there are sections on coupling from the past, Levy processes, self-similarity and stability, time changes, and the holding-time/jump-chain construction of continuous-time Markov chains. Finally, the number of exercises and problems has been increased by around 300 to a total of about 1317, and many of the existing exercises have been refreshed by additional parts. The solutions to these exercises and problems can be found in the companion volume, One Thousand Exercises in Probability, third edition. One Thousand Exercises in Probability, third edition is a revised, updated, and greatly expanded version of previous edition of 2001. The 1300+ exercises contained within are not merely drill problems, but have been chosen to illustrate the concepts, illuminate the subject, and both inform and entertain the reader. A broad range of subjects is covered, including elementary aspects of probability and random variables, sampling, generating functions, Markov chains, convergence, stationary processes, renewals, queues, martingales, diffusions, Levy processes, stability and self-similarity, time changes, and stochastic calculus including option pricing via the Black-Scholes model of mathematical finance.
Now available in a fully revised and updated new edition, this well established textbook affords a clear introduction to the theory of probability. Topics covered include conditional probability, independence, discrete and continuous random variables, generating functions and limit theorems, and an introduction to Markov chains. The text is accessible to undergraduate students and provides numerous examples and exercises to help develop the important skills necessary for problem solving. First edition Hb (1994): 0-521-42028-8 First Edition Pb (1994); 0-521-42183-7
This simple and concise introduction to probability theory is written in an informal, tutorial style with concepts and techniques defined and developed as necessary. After an elementary discussion of chance, Stirzaker sets out the central and crucial rules and ideas of probability including independence and conditioning. Counting, combinatorics and the ideas of probability distributions and densities follow. Later chapters present random variables and examine independence, conditioning, covariance and functions of random variables, both discrete and continuous. The final chapter considers generating functions and applies this concept to practical problems including branching processes, random walks and the central limit theorem. Examples, demonstrations, and exercises are used throughout to explore the ways in which probability is motivated by, and applied to, real life problems in science, medicine, gaming and other subjects of interest. Essential proofs of important results are included. Assuming minimal prior technical knowledge on the part of the reader, this book is suitable for students taking introductory courses in probability and will provide a solid foundation for more advanced courses in probability and statistics. It is also a valuable reference to those needing a working knowledge of probability theory and will appeal to anyone interested in this endlessly fascinating and entertaining subject.
The fourth edition of this successful text provides an introduction to probability and random processes, with many practical applications. It is aimed at mathematics undergraduates and postgraduates, and has four main aims. US BL To provide a thorough but straightforward account of basic probability theory, giving the reader a natural feel for the subject unburdened by oppressive technicalities. BE BL To discuss important random processes in depth with many examples.BE BL To cover a range of topics that are significant and interesting but less routine. BE BL To impart to the beginner some flavour of advanced work.BE UE OP The book begins with the basic ideas common to most undergraduate courses in mathematics, statistics, and science. It ends with material usually found at graduate level, for example, Markov processes, (including Markov chain Monte Carlo), martingales, queues, diffusions, (including stochastic calculus with Ito's formula), renewals, stationary processes (including the ergodic theorem), and option pricing in mathematical finance using the Black-Scholes formula. Further, in this new revised fourth edition, there are sections on coupling from the past, Levy processes, self-similarity and stability, time changes, and the holding-time/jump-chain construction of continuous-time Markov chains. Finally, the number of exercises and problems has been increased by around 300 to a total of about 1300, and many of the existing exercises have been refreshed by additional parts. The solutions to these exercises and problems can be found in the companion volume, One Thousand Exercises in Probability, third edition, (OUP 2020).CP
The fourth edition of this successful text provides an introduction to probability and random processes, with many practical applications. It is aimed at mathematics undergraduates and postgraduates, and has four main aims. US BL To provide a thorough but straightforward account of basic probability theory, giving the reader a natural feel for the subject unburdened by oppressive technicalities. BE BL To discuss important random processes in depth with many examples.BE BL To cover a range of topics that are significant and interesting but less routine.BE BL To impart to the beginner some flavour of advanced work.BE UE OP The book begins with the basic ideas common to most undergraduate courses in mathematics, statistics, and science. It ends with material usually found at graduate level, for example, Markov processes, (including Markov chain Monte Carlo), martingales, queues, diffusions, (including stochastic calculus with Ito's formula), renewals, stationary processes (including the ergodic theorem), and option pricing in mathematical finance using the Black-Scholes formula. Further, in this new revised fourth edition, there are sections on coupling from the past, Levy processes, self-similarity and stability, time changes, and the holding-time/jump-chain construction of continuous-time Markov chains. Finally, the number of exercises and problems has been increased by around 300 to a total of about 1300, and many of the existing exercises have been refreshed by additional parts. The solutions to these exercises and problems can be found in the companion volume, One Thousand Exercises in Probability, third edition, (OUP 2020).CP
Stochastic Processes and Models provides a concise and lucid introduction to simple stochastic processes and models. Including numerous exercises, problems and solutions, it covers the key concepts and tools, in particular: randon walks, renewals, Markov chains, martingales, the Wiener process model for Brownian motion, and diffusion processes, concluding with a brief account of the stochastic integral and stochastic differential equations as they arise in option-pricing. The text has been thoroughly class-tested and is ideal for an undergraduate second course in probability for students of statistics, mathematics, finance and operational research.
Probability comes of age with this, the first dictionary of probability and its applications in English, which supplies a guide to the concepts and vocabulary of this rapidly expanding field. Besides the basic theory of probability and random processes, applications covered here include financial and insurance mathematics, operations research (including queueing, reliability, and inventories), decision and game theory, optimization, time series, networks, and communication theory, as well as classic problems and paradoxes. The dictionary is reliable, stable, concise, and cohesive. Each entry provides a rigorous definition, a sketch of the context, and a reference pointing the reader to the wider literature. Judicious use of figures makes complex concepts easier to follow without oversimplifying. As the only dictionary on the market, this will be a guiding reference for all those working in, or learning, probability together with its applications.
Stochastic Processes and Models provides a concise and lucid introduction to simple stochastic processes and models. Including numerous exercises, problems and solutions, it covers the key concepts and tools, in particular: randon walks, renewals, Markov chains, martingales, the Wiener process model for Brownian motion, and diffusion processes, concluding with a brief account of the stochastic integral and stochastic differential equations as they arise in option-pricing. The text has been thoroughly class-tested and is ideal for an undergraduate second course in probability for students of statistics, mathematics, finance and operational research.
This third edition is a revised, updated, and greatly expanded version of previous edition of 2001. The 1300+ exercises contained within are not merely drill problems, but have been chosen to illustrate the concepts, illuminate the subject, and both inform and entertain the reader. A broad range of subjects is covered, including elementary aspects of probability and random variables, sampling, generating functions, Markov chains, convergence, stationary processes, renewals, queues, martingales, diffusions, Levy processes, stability and self-similarity, time changes, and stochastic calculus including option pricing via the Black-Scholes model of mathematical finance. The text is intended to serve students as a companion for elementary, intermediate, and advanced courses in probability, random processes and operations research. It will also be useful for anyone needing a source for large numbers of problems and questions in these fields. In particular, this book acts as a companion to the authors' volume, Probability and Random Processes, fourth edition (OUP 2020).
|
You may like...
|