0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Federated Learning for Wireless Networks (Hardcover, 1st ed. 2021): Choong Seon Hong, Latif U. Khan, Mingzhe Chen, Dawei Chen,... Federated Learning for Wireless Networks (Hardcover, 1st ed. 2021)
Choong Seon Hong, Latif U. Khan, Mingzhe Chen, Dawei Chen, Walid Saad, …
R4,585 Discovery Miles 45 850 Ships in 12 - 19 working days

Recently machine learning schemes have attained significant attention as key enablers for next-generation wireless systems. Currently, wireless systems are mostly using machine learning schemes that are based on centralizing the training and inference processes by migrating the end-devices data to a third party centralized location. However, these schemes lead to end-devices privacy leakage. To address these issues, one can use a distributed machine learning at network edge. In this context, federated learning (FL) is one of most important distributed learning algorithm, allowing devices to train a shared machine learning model while keeping data locally. However, applying FL in wireless networks and optimizing the performance involves a range of research topics. For example, in FL, training machine learning models require communication between wireless devices and edge servers via wireless links. Therefore, wireless impairments such as uncertainties among wireless channel states, interference, and noise significantly affect the performance of FL. On the other hand, federated-reinforcement learning leverages distributed computation power and data to solve complex optimization problems that arise in various use cases, such as interference alignment, resource management, clustering, and network control. Traditionally, FL makes the assumption that edge devices will unconditionally participate in the tasks when invited, which is not practical in reality due to the cost of model training. As such, building incentive mechanisms is indispensable for FL networks. This book provides a comprehensive overview of FL for wireless networks. It is divided into three main parts: The first part briefly discusses the fundamentals of FL for wireless networks, while the second part comprehensively examines the design and analysis of wireless FL, covering resource optimization, incentive mechanism, security and privacy. It also presents several solutions based on optimization theory, graph theory, and game theory to optimize the performance of federated learning in wireless networks. Lastly, the third part describes several applications of FL in wireless networks.

Federated Learning for Wireless Networks (Paperback, 1st ed. 2021): Choong Seon Hong, Latif U. Khan, Mingzhe Chen, Dawei Chen,... Federated Learning for Wireless Networks (Paperback, 1st ed. 2021)
Choong Seon Hong, Latif U. Khan, Mingzhe Chen, Dawei Chen, Walid Saad, …
R4,586 Discovery Miles 45 860 Ships in 10 - 15 working days

Recently machine learning schemes have attained significant attention as key enablers for next-generation wireless systems. Currently, wireless systems are mostly using machine learning schemes that are based on centralizing the training and inference processes by migrating the end-devices data to a third party centralized location. However, these schemes lead to end-devices privacy leakage. To address these issues, one can use a distributed machine learning at network edge. In this context, federated learning (FL) is one of most important distributed learning algorithm, allowing devices to train a shared machine learning model while keeping data locally. However, applying FL in wireless networks and optimizing the performance involves a range of research topics. For example, in FL, training machine learning models require communication between wireless devices and edge servers via wireless links. Therefore, wireless impairments such as uncertainties among wireless channel states, interference, and noise significantly affect the performance of FL. On the other hand, federated-reinforcement learning leverages distributed computation power and data to solve complex optimization problems that arise in various use cases, such as interference alignment, resource management, clustering, and network control. Traditionally, FL makes the assumption that edge devices will unconditionally participate in the tasks when invited, which is not practical in reality due to the cost of model training. As such, building incentive mechanisms is indispensable for FL networks. This book provides a comprehensive overview of FL for wireless networks. It is divided into three main parts: The first part briefly discusses the fundamentals of FL for wireless networks, while the second part comprehensively examines the design and analysis of wireless FL, covering resource optimization, incentive mechanism, security and privacy. It also presents several solutions based on optimization theory, graph theory, and game theory to optimize the performance of federated learning in wireless networks. Lastly, the third part describes several applications of FL in wireless networks.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Bullsh!t - 50 Fibs That Made South…
Jonathan Ancer Paperback  (2)
R280 R250 Discovery Miles 2 500
Stellenbosch: Murder Town - Two Decades…
Julian Jansen Paperback R360 R337 Discovery Miles 3 370
Bantex A4 Slim-Line Display Book (10…
R35 Discovery Miles 350
Bantex A4 PP Lever Arch File (40mm)(Lime…
R55 Discovery Miles 550
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet Paperback R399 R374 Discovery Miles 3 740
Database Theory - ICDT 2001 - 8th…
Jan Van den Bussche, Victor Vianu Paperback R1,715 Discovery Miles 17 150
Thuto A4 Lever Arch Files - Ndebele…
R250 R180 Discovery Miles 1 800
Mokgomana - The Life Of John Kgoana…
Peter Delius, Daniel Sher Paperback R260 R240 Discovery Miles 2 400
Bantex B3490 Suspension File Tabs with…
R48 Discovery Miles 480
WTF - Capturing Zuma: A Cartoonist's…
Zapiro Paperback R295 R272 Discovery Miles 2 720

 

Partners